
Simulink® Real-Time™
User's Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Real-Time™ User's Guide
© COPYRIGHT 1999–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 1999 First printing New for Version 1 (Release 11.1)
November 2000 Online only Revised for Version 1.1 (Release 12)
June 2001 Online only Revised for Version 1.2 (Release 12.1)
September 2001 Online only Revised for Version 1.3 (Release 12.1+)
July 2002 Online only Revised for Version 2 (Release 13)
June 2004 Online only Revised for Version 2.5 (Release 14)
August 2004 Online only Revised for Version 2.6 (Release 14+)
October 2004 Online only Revised for Version 2.6.1 (Release 14SP1)
November 2004 Online only Revised for Version 2.7 (Release 14SP1+)
March 2005 Online only Revised for Version 2.7.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.8 (Release 14SP3)
March 2006 Online only Revised for Version 2.9 (Release 2006a)
May 2006 Online only Revised for Version 3.0 (Release 2006a+)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 4.0 (Release 2008b)
March 2009 Online only Revised for Version 4.1 (Release 2009a)
September 2009 Online only Revised for Version 4.2 (Release 2009b)
March 2010 Online only Revised for Version 4.3 (Release 2010a)
September 2010 Online only Revised for Version 4.4 (Release 2010b)
April 2011 Online only Revised for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)
March 2013 Online only Revised for Version 5.4 (Release 2013a)
September 2013 Online only Revised for Version 5.5 (Release 2013b)
March 2014 Online only Revised for Version 6.0 (Release 2014a)
October 2014 Online only Revised for Version 6.1 (Release 2014b)
March 2015 Online only Revised for Version 6.2 (Release 2015a)
September 2015 Online only Revised for Version 6.3 (Release 2015b)
March 2016 Online only Revised for Version 6.4 (Release 2016a)
September 2016 Online only Revised for Version 6.5 (Release 2016b)
March 2017 Online only Revised for Version 6.6 (Release 2017a)
September 2017 Online only Revised for Version 6.7 (Release 2017b)
March 2018 Online only Revised for Version 6.8 (Release 2018a)
September 2018 Online only Revised for Version 6.9 (Release 2018b)
March 2019 Online only Revised for Version 6.10 (Release 2019a)
September 2019 Online only Revised for Version 6.11 (Release 2019b)

Model Architectures

FPGA Models
1

Speedgoat FPGA Support with HDL Workflow Advisor . . . 1-2

FPGA Programming and Configuration 1-5

Interrupt Configuration . 1-17
FPGA Domain Model . 1-17
Simulink Real-Time Domain Model 1-18

FPGA Subsystem Plan . 1-20
Target Device . 1-20
FPGA Synchronization Mode . 1-20
FPGA Inports and Outports . 1-20
FPGA Clock Frequency . 1-22
FPGA Deployment . 1-22

FPGA Synchronization Modes . 1-24

Functional Mockup Units and Simulink Real-Time
2

Apply Functional Mockup Units with Simulink Real-Time
. 2-2

Build Considerations . 2-2

v

Contents

Third-Party Calibration Support
3

Calibrate Real-Time Application . 3-2

Prepare ASAP2 Data Description File 3-4
Initial Setup . 3-5
Set Up Parameters . 3-6
Set Up Signals . 3-6
Set Up Lookup Tables . 3-7
Generate Data Description File . 3-8

Calibrate Parameters with Vector CANape 3-10
Prepare Project . 3-10
Prepare Device . 3-10
Configure Signals and Parameters 3-10
Perform Signal Measurement and Parameter Calibration

. 3-11

Vector CANape Limitations . 3-12

Troubleshoot Vector CANape Operation 3-13
What This Issue Means . 3-13
Try This Workaround . 3-13

Calibrate Parameters with ETAS Inca 3-15
Prepare Database . 3-15
Prepare Project . 3-15
Prepare Workspace . 3-15
Prepare Experiment . 3-16
Configure Signals and Parameters 3-16
Perform Signal Measurement and Parameter Calibration

. 3-16

ETAS Inca Limitations . 3-18

Troubleshoot ETAS Inca Operation 3-19
What This Issue Means . 3-19
Try This Workaround . 3-19

vi Contents

Incorporating Fortran S-Functions
4

Fortran S-Functions . 4-2
Prerequisites . 4-2
Simulink S-Function Example . 4-2
Steps to Incorporate Fortran . 4-2

Real-Time Application Setup

Real-Time Application Environment
5

Default Target Computers . 5-2

Command-Line C Compiler Configuration 5-3

Command-Line Setup . 5-5

Command-Line PCI Bus Ethernet Setup 5-6
PCI Bus Ethernet Protocol Hardware 5-6
Command-Line PCI Bus Ethernet Settings 5-7

Ethernet Card Selection by Index 5-9

Command-Line Ethernet Card Selection by Index 5-10

Command-Line Target Computer Settings 5-13

Command-Line Target Computer Boot Methods 5-15

Command-Line Network Boot Method 5-16

Command-Line Standalone Boot Method 5-18
Command-Line Standalone Settings 5-18
Real-Time Application Build . 5-19

vii

Real-Time Application Transfer and Boot Configuration
. 5-19

Signals and Parameters
6

Signal Monitoring Basics . 6-4

Monitor Signals with Simulink Real-Time Explorer 6-6

Monitor Signals with MATLAB Language 6-9

Instrument a Stateflow Subsystem 6-11
Configure Stateflow States as Test Points 6-11
Monitor Stateflow States with Simulink Real-Time Explorer

. 6-13

Signal Group Monitoring Formats 6-16

Monitor Stateflow States with MATLAB Language 6-17

Animate Stateflow Charts with Simulink External Mode
. 6-18

Signal Tracing Basics . 6-20

Simulink Real-Time Scope Usage 6-21

Target Scope Usage . 6-23

Configure Real-Time Target Scope Blocks 6-25

Create Target Scopes with Simulink Real-Time Explorer
. 6-31

Configure Scope Sampling with Simulink Real-Time
Explorer . 6-37

Trigger Scopes with Simulink Real-Time Explorer 6-41
Freerun Triggering . 6-41

viii Contents

Software Triggering . 6-41
Signal Triggering . 6-43
Scope Triggering . 6-47

Configure Target Scopes with Simulink Real-Time Explorer
. 6-51

Configure Target Scopes with MATLAB Language 6-55

Create Signal Groups with Simulink Real-Time Explorer
. 6-58

Host Scope Usage . 6-61

Configure Real-Time Host Scope Blocks 6-62

Create Host Scopes with Simulink Real-Time Explorer . 6-66
Set Up Model . 6-66
Configure Host Scope . 6-66
View Host Scope . 6-68

Configure the Host Scope Viewer 6-71

Trace Signals with Simulink External Mode 6-73

Inspect Simulink® Real-Time™ Data with Simulation Data
Inspector . 6-76

Stream Signal Data from Target Computer to Simulation
Data Inspector . 6-82

Trace or Log Data with the Simulation Data Inspector . 6-86
Set Up Model . 6-86
Set Up the Simulation Data Inspector 6-87
View Simulation Data . 6-87

External Mode Usage . 6-91

Signal Logging Basics . 6-92

File Scope Usage . 6-94

Configure Real-Time File Scope Blocks 6-97

ix

Create File Scopes with Simulink Real-Time Explorer 6-102

Configure File Scopes with Simulink Real-Time Explorer
. 6-106

Log Signal Data into Multiple Files 6-110

Log Signal Data with Outport Blocks and Simulink Real-
Time Explorer . 6-114

Data Logs . 6-114
Configure the Model for Data Logging 6-115
Log the Data . 6-116
Download and Plot the Data . 6-116

Log Signal Data with Outport Block and MATLAB
Language . 6-120

Data Logs with SimulinkRealTime.target Properties . . 6-120
Data Logs with the Simulation Data Inspector and Data
Profiler . 6-121

Configure the Model for Data Logging 6-122
Log the Data . 6-123
Download and Plot the Data . 6-123

Signal Logging Buffer Size . 6-127

Configure File Scopes with MATLAB Language 6-128

Tune Parameters with Simulink Real-Time Explorer . . 6-132
Set Up Host Scope . 6-132
Initial Values . 6-133
Updated Values . 6-134

Create Parameter Groups with Simulink Real-Time
Explorer . 6-137

Tune Parameters with MATLAB Language 6-140

Tune Parameters with Simulink External Mode 6-143
Tuning with Batch Mode and Update All Parameters . 6-144

Save and Reload Parameters with MATLAB Language 6-145
Save the Current Set of Real-Time Application Parameters

. 6-145

x Contents

Load Saved Parameters to a Real-Time Application . . . 6-146
List Parameter Values Stored in a File 6-146

Tunable Block Parameters and Tunable Global Parameters
. 6-148

Tunable Parameters . 6-148
Inlined Parameters . 6-149
Tuning in External Mode . 6-149
Tuning with Simulink Real-Time Explorer 6-149
Tuning with MATLAB Language 6-150

Tune Inlined Parameters with Simulink Real-Time
Explorer . 6-151
Configure Model to Tune Inlined Parameters 6-151
Initial Value . 6-154
Updated Value . 6-156

Tune Inlined Parameters with MATLAB Language 6-158

Tune Parameter Structures with Simulink Real-Time
Explorer . 6-160

Create Parameter Structure . 6-160
Replace Block Parameters with Parameter Structure Fields

. 6-161
Tune Parameters in a Parameter Structure 6-162
Save and Load Parameter Structure 6-164

Tune Parameter Structures with MATLAB Language . . 6-166
Create Parameter Structure . 6-166
Replace Block Parameters with Parameter Structure Fields

. 6-167
Tune Parameters in a Parameter Structure 6-167
Save and Load Parameter Structure 6-169

Define and Update Inport Data 6-171
File Dependencies . 6-171
Map Inport to Use Square Wave 6-171
Update Inport to Use Sawtooth Wave 6-174

Define and Update Inport Data with MATLAB Language
. 6-177

File Dependencies . 6-177
Map Inport to Use Square Wave 6-177

xi

Update Inport to Use Sawtooth Wave 6-179

Inport Data Mapping Limitations 6-182

Display and Filter Hierarchical Signals and Parameters
. 6-183

Hierarchical Display . 6-183
Filtered Display . 6-184
Grouped Display . 6-186

Display and Filter Hierarchical Signals and Parameters
(tech preview) . 6-188

Hierarchical Display . 6-188
Filtered Display . 6-189
Grouped Display . 6-190

Troubleshoot Signals Not Accessible by Name 6-192
What This Issue Means . 6-192
Try This Workaround . 6-192

Troubleshoot Parameters Not Accessible by Name . . . 6-194
What This Issue Means . 6-194
Try This Workaround . 6-194

Troubleshoot Instance-Specific Parameters Not Saved 6-195
What This Issue Means . 6-195
Try This Workaround . 6-195

Troubleshoot Instrument Label Not Present 6-196
What This Issue Means . 6-196
Try This Workaround . 6-196

Troubleshoot Internationalization Issues 6-197
What This Issue Means . 6-197
Try This Workaround . 6-197

Internationalization Issues . 6-198

xii Contents

Execution Modes
7

Execution Modes . 7-2
Interrupt Mode . 7-3
Polling Mode . 7-3

Real-Time Application Execution

Execution with User Interface Models
8

Simulink Real-Time Interface Blocks to Simulink Models
. 8-2

Simulink User Interface Model . 8-2
Creating a Custom Graphical Interface 8-3
To Target Block . 8-4
From Target Block . 8-6
Creating a Real-Time Application Model 8-8
Marking Block Parameters . 8-8
Marking Block Signals . 8-10

Execution Using the Target Computer Command
Line

9
Control Real-Time Application at Target Computer

Command Line . 9-2
Trace Signals at Target Computer Command Line 9-2
Tune Parameters at Target Computer Command Line . . . 9-4
Alias Commands at Target Computer Command Line . . . 9-5
Find Signal and Parameter Indexes 9-5

xiii

Tuning Performance
10

Improve Performance of Multirate Model 10-2

Multicore Processor Configuration 10-10

Limits on Sample Time . 10-12

CPU Overload Options . 10-14
Option Behavior . 10-14
Violation of xPCMaxOverloads 10-16
Violation of xPCMaxOverloadLen 10-17
Violation of xPCStartupFlag . 10-17

Execution Profiling for Real-Time Applications 10-19

Reduce Build Time for Simulink Real-Time Referenced
Models . 10-27

Sample Time and Throughput in Real-Time Applications
. 10-29

Real-Time Performance Factors 10-29
Resources . 10-29
Improving Performance with Concurrency 10-31
Additional Optimizations . 10-49

Execution with MATLAB Scripts

Real-Time Applications and Scopes in the MATLAB
Interface

11
Real-Time Application Objects . 11-2

Create Real-Time Application Objects 11-3
Display Application Object Properties 11-3

xiv Contents

Set Real-Time Application Object Property Values 11-4
Get Real-Time Application Object Property Values 11-5
Use Real-Time Application Object Functions 11-5

Real-Time Scope Objects . 11-7
Display Scope Object Properties for One Scope 11-8
Display Scope Object Properties for Multiple Scopes . . 11-9
Set Scope Property Values . 11-9
Get Scope Property Values . 11-10
Use Scope Object Functions . 11-11

Acquire Signal Data with File Scopes 11-12

Acquire Signal Data into Dynamically Named Files . . . 11-14

Scope Trigger Configuration . 11-16

Pretriggering and Posttriggering of Scopes 11-17

Trigger One Scope with Another Scope 11-19
Scope-Triggered Data Acquisition 11-19
Trigger Sample Setting . 11-22

Minimize Data Gaps with Two Scopes 11-26

Logging Signal Data with File System Objects
12

File System Basics . 12-2

Using SimulinkRealTime.fileSystem Objects 12-5
Copying Files from the Target Computer to the

Development Computer . 12-6
Copying Files from the Development Computer to the

Target Computer . 12-7
Accessing File Systems on a Specific Target Computer

. 12-7
Reading the Contents of a File on the Target Computer

. 12-8
Removing a File from the Target Computer 12-10

xv

Getting a List of Open Files on the Target Computer . . 12-11
Getting Information About a File on the Target Computer

. 12-12
Getting Information About a Disk on the Target Computer

. 12-12

Deploy the MATLAB Application as a Standalone
Executable

13
MATLAB Runtime Setup . 13-2

Deploy MATLAB Application to Control Real-Time
Application . 13-4

Prerequisites . 13-4
Package the MATLAB Application 13-4
Run the MATLAB Application . 13-6

Automated Test with Simulink Test
14

Test Real-Time Application . 14-2

Troubleshooting

Simulink Real-Time Examples
15

Parameter Tuning and Data Logging 15-2

Signal Tracing With a Host Scope in Freerun Mode 15-7

xvi Contents

Signal Tracing Using Software Triggering 15-12

Signal Tracing Using Signal Triggering 15-18

Signal Tracing Using Scope Triggering 15-24

Signal Tracing With a Target Scope 15-30

Pre- and Post-Triggering of a Host Scope 15-35

Time- and Value-Equidistant Data Logging 15-41

Frame Signal Processing . 15-48

Spectrum Analyzer . 15-49

Simple Client Application With the .NET API 15-54

Concurrent Execution on Simulink® Real-Time™ 15-63

Standalone User Interface using the MATLAB®
Compiler™ . 15-70

Add App Designer Instrument Panel App to Tank Model
. 15-74

Add m-Script Instrument Panel App to Tank Model . . . 15-84

Add App Designer App to Inverted Pendulum Model . . 15-93

Triggering Scope Instruments . 15-99

Asynchronous Events . 15-100

EtherCAT® Communication with Beckhoff® Analog IO
Slave Devices EL3062 and EL4002 15-101

EtherCAT® Communication with Beckhoff® Digital IO
Slave Devices EL1004 and EL2004 15-108

EtherCAT® Communication - Motor Velocity Control with
Accelnet™ Drive . 15-115

xvii

EtherCAT® Communication - Motor Position Control with
an Accelnet™ Drive and Beckhoff® Analog IO Devices
. 15-121

Generate ENI Files for EtherCAT Devices 15-128

Digital I/O with Speedgoat FPGA Board 15-139

PLL-Based Interrupt Generation from FPGA Input . . 15-146

IEEE® 1588™ Precision Time Protocol - Execution
Synchronization . 15-158

IEEE® 1588™ Precision Time Protocol - Clock
Synchronization . 15-167

Real-Time Transmit and Receive over Ethernet 15-175

Filtering on MAC Address . 15-178

Filtering on EtherType . 15-183

Ethernet Rx Block Filtering . 15-189

Simple ASCII Encoding/Decoding Loopback Test (With
Baseboard Blocks) . 15-197

ASCII Encoding/Decoding Loopback Test 15-199

ASCII Encoding/Decoding Loopback Test (With Baseboard
Blocks) . 15-201

ASCII Encoding/Decoding Resync Loopback Test 15-203

ASCII Encoding/Decoding Resync Loopback Test (With
Baseboard Blocks) . 15-205

Binary Encoding/Decoding Loopback Test 15-207

Binary Encoding/Decoding Loopback Test (With
Baseboard Blocks) . 15-209

xviii Contents

Binary Encoding/Decoding Resync Loopback Test . . . 15-211

Binary Encoding/Decoding Resync Loopback Test (With
Baseboard Blocks) . 15-213

Read CPU Temperature on Simulink® Real-Time™ . . 15-215

Target to Target communication using TCP 15-217

Target to Host Transmission using UDP 15-225

Target to Target Transmission using UDP 15-231

Apply Simulink Real-Time Model Template to Create Real-
Time Application . 15-238

Data Logging With Simulation Data Inspector (SDI) 15-241

Basic J1939 Communication over CAN 15-247

Troubleshooting

Troubleshooting Basics
16

Troubleshoot with Confidence Test 16-2

Confidence Test Failures
17

Test 1: Ping Target Computer with System Ping 17-2

Test 2: Ping Target Computer with slrtpingtarget 17-4

xix

Test 3: Software Restart Target Computer 17-5

Test 4: Build and Download slrttestmdl 17-7

Test 5: Check Communication with Target Computer . . 17-9

Test 6: Download Prebuilt Real-Time Application 17-10

Test 7: Execute Real-Time Application 17-11

Test 8: Upload Logged Data and Compare Results 17-12

Development Computer Configuration
18

Troubleshoot Halted Boot Drive Creation 18-2
What This Issue Means . 18-2
Try This Workaround . 18-2

Target Computer Configuration
19

Troubleshoot Target Computer Stack Size 19-2
What This Issue Means . 19-2
Try This Workaround . 19-2

Troubleshoot Target Computer Ethernet and MAC Address
Information . 19-4

What This Issue Means . 19-4
Try This Workaround . 19-4

xx Contents

Link Between Development and Target Computers
20

Troubleshoot Communication Failure with Target
Computers . 20-2

What This Issue Means . 20-2
Try This Workaround . 20-2

Troubleshoot Communication Timeout with Target
Computers . 20-4

What This Issue Means . 20-4
Try This Workaround . 20-4

Troubleshoot Communication Timeout with Target
Computers and Multiple Ethernet Cards 20-6

What This Issue Means . 20-6
Try This Workaround . 20-6

Troubleshoot Communication Failure Through Firewall
. 20-8

What This Issue Means . 20-8
Try This Workaround . 20-8

Troubleshoot Network Boot Failure Through Firewall
. 20-10

What This Issue Means . 20-10
Try This Workaround . 20-10

Target Computer Boot Process
21

Model Compilation
22

Troubleshoot Model Links to DLLs 22-2
What This Issue Means . 22-2

xxi

Try This Workaround . 22-2

Troubleshoot Build Error for Accelerator Mode 22-3
What This Issue Means . 22-3
Try This Workaround . 22-3

Troubleshoot Referenced Model with Global Data Stores
. 22-4

What This Issue Means . 22-4
Try This Workaround . 22-4

Real-Time Application Execution
23

Troubleshoot Missing or Unreadable Crash Information
. 23-2

What This Issue Means . 23-2
Try This Workaround . 23-2

Troubleshoot Unexpected Measured Sample Time Value
. 23-4

What This Issue Means . 23-4
Try This Workaround . 23-5

Troubleshoot Changed Sample Time at Run Time That
Affects Results . 23-6

What This Issue Means . 23-6
Try This Workaround . 23-6

Troubleshoot Unexpected Measured Stop Time Value
. 23-7

What This Issue Means . 23-7
Try This Workaround . 23-7

xxii Contents

Real-Time Application Signals
24

Troubleshoot Invalid File IDs on Target Computer 24-2
What This Issue Means . 24-2
Try This Workaround . 24-2

Troubleshoot Missing Mux Block Output on Scope 24-3
What This Issue Means . 24-3
Try This Workaround . 24-3

Real-Time Application Performance
25

Troubleshoot Unsatisfactory Real-Time Performance . . 25-2
What This Issue Means . 25-2
Try This Workaround . 25-2

Troubleshoot Overloaded CPU from Executing Real-Time
Application . 25-5

What This Issue Means . 25-5
Try This Workaround . 25-5

Troubleshoot Task Execution Time 25-7
What This Issue Means . 25-7
Try This Workaround . 25-7

Troubleshoot Failed Read of Profiling Data 25-8
What This Issue Means . 25-8
Try This Workaround . 25-8

Troubleshoot Timeout During File System Access 25-9
What This Issue Means . 25-9
Try This Workaround . 25-9

xxiii

Simulink Real-Time Support
26

Find Simulink Real-Time Support 26-2

Install Simulink Real-Time Software Updates 26-3

xxiv Contents

Model Architectures

25

FPGA Models

• “Speedgoat FPGA Support with HDL Workflow Advisor” on page 1-2
• “FPGA Programming and Configuration” on page 1-5
• “Interrupt Configuration” on page 1-17
• “FPGA Subsystem Plan” on page 1-20
• “FPGA Synchronization Modes” on page 1-24

1

Speedgoat FPGA Support with HDL Workflow Advisor
Simulink Real-Time and HDL Coder™ enable you to implement Simulink algorithms and
configure I/O functionality on Speedgoat field programmable gate array (FPGA) boards.

For an example that shows the development workflow for FPGA I/O boards, see “FPGA
Programming and Configuration” on page 1-5. You do not use these blocks outside of
HDL Coder HDL Workflow Advisor.

To use these blocks, open HDL Coder HDL Workflow Advisor and use it to generate a
Simulink Real-Time interface subsystem. See “FPGA Programming and Configuration” on
page 1-5.

The subsystem mask controls the block parameters. Do not edit the parameters directly.
The FPGA I/O board block descriptions are for informational purposes only.

Speedgoat I/O FPGA boards are sold as part of Speedgoat target computer systems. See:

www.mathworks.com/products/simulink-real-time/supported/hardware-
drivers.html.

Simulink Real-Time supports the following Speedgoat (www.speedgoat.com) FPGA I/O
boards.

Speedgoat IO331 The Speedgoat IO331 is a field-
programmable gate array (FPGA) board
that provides 64 bidirectional LVCMOS or
32 bidirectional LVDS I/O lines. This board
is based on a Xilinx® Spartan® 6 chip with
147,333 logic cells.

The Speedgoat IO331 is the base board.
The Speedgoat IO331-6 is the AXM-A75 A/D
converter, an add-on to the Speedgoat
IO331.

1 FPGA Models

1-2

https://www.mathworks.com/programs/products/simulink-real-time/supported/hardware-drivers.html
https://www.mathworks.com/programs/products/simulink-real-time/supported/hardware-drivers.html
https://www.speedgoat.com

Speedgoat IO333 The Speedgoat IO333 is a field-
programmable gate array (FPGA) board
based on a Xilinx Kintex® 7 chip with 325k
logic cells.

HDL Coder HDL Workflow Advisor supports
the Speedgoat IO333-325K-06
configuration. For more information, see
Speedgoat HDL Coder Integration Package
for the IO333-325K at www.speedgoat.com/
help.

To work with FPGAs in the Simulink Real-Time environment, you must:

• Install HDL Coder and Xilinx design tools. For the specific tool and version required,
see the board reference topic and the HDL Coder documentation.

• Install the Speedgoat FPGA I/O board in the Speedgoat target machine.
• Be familiar with FPGA technology. In particular, you must know the clock frequency

and the I/O connector pin and channel configuration of your FPGA board.
• Have experience using data type conversion and designing Simulink fixed-point

algorithms.

To generate HDL code for your FPGA target, you do not need to have HDL programming
experience.

See Also

More About
• “Supported Third-Party Tools and Hardware” (HDL Coder)
• “Tool Setup” (HDL Coder)
• “FPGA Programming and Configuration” on page 1-5
• “Digital I/O with Speedgoat FPGA Board” on page 15-139
• “PLL-Based Interrupt Generation from FPGA Input” on page 15-146

 See Also

1-3

https://www.speedgoat.com/help
https://www.speedgoat.com/help

External Websites
• www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html
• www.speedgoat.com/help
• www.speedgoat.com

1 FPGA Models

1-4

https://www.mathworks.com/programs/products/simulink-real-time/supported/hardware-drivers.html
https://www.speedgoat.com/help
https://www.speedgoat.com

FPGA Programming and Configuration
This example shows how to implement a Simulink® algorithm on a Speedgoat FPGA I/O
board by using HDL Workflow Advisor to:

1 Specify an FPGA board and its I/O interface.
2 Synthesize the Simulink algorithm for FPGA programming.
3 Generate a Simulink® Real-Time™ interface subsystem model.

The interface subsystem model contains blocks to program the FPGA and communicate
with the FPGA I/O board during real-time application execution. You add the generated
subsystem to your Simulink Real-Time domain model.

The entire workflow looks like this figure.

 FPGA Programming and Configuration

1-5

This example uses the Speedgoat IO331. You can use any FPGA I/O module supported by
Simulink Real-Time and HDL Coder that meets the speed, size, and pinout requirements
of the model.

Requirements and Preconditions

HDL Coder™

Before you start, complete an FPGA subsystem plan.

For the IO331 board, HDL Workflow Advisor requires the Xilinx® ISE toolset. To install
this toolset, in the Command Window, type:

hdlsetuptoolpath('ToolName', 'Xilinx ISE', 'ToolPath', toolpath)

where toolpath is the full path to the synthesis tool executable.

For the toolset requirements of other boards, see Supported Third-Party Tools and
Hardware (HDL Coder).

Step 1. Simulink Domain Model

The Simulink FPGA domain model contains a subsystem (algorithm) to be programmed
onto the FPGA chip. Using this model, you can test your FPGA algorithm in a simulation
environment before you download the algorithm to an FPGA board.

1 Create a Simulink model that contains the algorithm that you want to load onto the
FPGA, in this case a loopback test.

2 Place the algorithm to be programmed on the FPGA inside a Subsystem block. The
model can include other blocks and subsystems for testing. However, one subsystem
must contain the FPGA algorithm.

3 Set or confirm the subsystem inport and outport names and data types. The HDL
Coder HDL Workflow Advisor uses these settings for routing and mapping algorithm
signals to I/O connector channels.

4 Save the model.

This model is your FPGA domain model. It represents the simulation sample rate of the
clock on your FPGA board. For example, the Speedgoat IO331 has an onboard 125 MHz
clock. One second of simulation equals 125e6 iterations of the model.

For an example of an FPGA domain model, see dslrtSGFPGAloopback_fpga. The
ServoSystem subsystem contains the FPGA algorithm.

1 FPGA Models

1-6

Step 2. FPGA Target Configuration

This procedure uses the dslrtSGFPGAloopback_fpga example. You must have already
created an FPGA subsystem (algorithm) in an FPGA domain model and developed an
FPGA subsystem plan.

1 Open the FPGA domain model dslrtSGFPGAloopback_fpga.
2 In the FPGA model, right-click the FPGA subsystem (ServoSystem). From the

context menu, select HDL Code > HDL Workflow Advisor. The HDL Workflow
Advisor dialog box displays several tasks for the subsystem. Address only your
required subset of the tasks.

3 Expand the Set Target folder and select task 1.1 Set Target Device and Synthesis
Tool.

4 Set Target Workflow to Simulink Real-Time FPGA I/O.
5 From the Target platform list, select the Speedgoat FPGA I/O board installed in

your Speedgoat target machine, in this case the Speedgoat IO331. Check that HDL
Workflow advisor sets the synthesis tool to the Xilinx® ISE Design Suite.

6 Click Run This Task.

 FPGA Programming and Configuration

1-7

Step 3. FPGA Target Interface Configuration

You must have already configured the FPGA target.

1 In the Set Target folder, select task 1.2 Set Target Interface.
2 In the Processor/FPGA synchronization box, select Free running.
3 For signals hwIn and hwOut, in the Target Platform Interfaces column, select

LVCMOS I/O Channel [0:63]. In the Bit Range/Address/FPGA Pin column,
enter the channel value for each signal, or take the defaults.

1 FPGA Models

1-8

4 For signals pciRead and pciWrite, in the Target Platform Interfaces column,
select PCI Interface. In the Bit Range/Address/FPGA Pin column, use the
automatically generated values. Do not enter PCI address values.

5 Click Run This Task.

Step 4. FPGA Target Frequency Configuration

You must have already configured the FPGA target interface.

1 In the Set Target folder, select task 1.3 Set Target Frequency (optional). The Set
Target Frequency pane contains fields showing the FPGA input clock frequency

 FPGA Programming and Configuration

1-9

(fixed) and the FPGA system clock frequency. The FPGA system clock frequency
defaults to the FPGA input clock frequency.

2 To specify a different system clock frequency (for example, 50 MHz), type the new
value in the field FPGA system clock frequency (MHz). For the permitted range
for the system clock rate, see the Speedgoat board characteristics table. The system
sometimes sets a value different from the one you specified.

3 Click Run This Task.

Step 5. Simulink Real-Time Interface Subsystem Generation

This procedure generates an interface subsystem file for the dxpcSGFPGAloopback_fpga
example.

1 FPGA Models

1-10

Assign distinct names to blocks that contain different HDL code. The name of the
interface subsystem file is derived directly from the block name. If two blocks containing
different HDL code have the same name, the names collide and one of the blocks gets the
wrong code.

You must have already configured the FPGA target interface and the required target
frequency. If you have specified vector inports or outports, you must have already
selected the Scalarize vector ports check box. This check box is on the Coding style
tab of node Global Settings, under node HDL Code Generation in the Configuration
Parameters dialog box.

1 Expand the Download to Target folder, and right-click task 5.2 Generate Simulink
Real-Time Interface.

2 In this pane, click Run To Selected Task.

This action:

• Runs the remaining tasks.
• Creates the FPGA bitstream file in the hdlsrc folder. The Simulink Real-Time

interface subsystem references this bitstream file during the build and download
process.

• Generates a model named gm_dslrtSGFPGAloopback_fpga_slrt, which contains
the Simulink Real-Time interface subsystem.

Here is an example of the HDL Coder HDL Workflow Advisor after this action.

 FPGA Programming and Configuration

1-11

The generated interface subsystem looks like this figure.

1 FPGA Models

1-12

This generated model contains a masked subsystem with the same name as the subsystem
in the Simulink FPGA domain model. Although the appearance is similar, this subsystem
does not contain the Simulink algorithm. Instead, the algorithm is implemented in an
FPGA bitstream. You reference and load this algorithm into the FPGA from this
subsystem.

Step 6. Simulink Real-Time Domain Model

Using the Simulink Real-Time software, transform a Simulink or Stateflow® domain
model into a Simulink Real-Time domain model and execute it on a Speedgoat target
machine for real-time testing applications. After creating a Speedgoat FPGA interface
subsystem. You can then include the FPGA board in your Simulink Real-Time domain
model by inserting the interface subsystem.

1 Create a Simulink Real-Time domain model with the functionality that you want to
simulate with the FPGA algorithm. Leave the inports and outports of the FPGA
subsystem disconnected.

2 Save the model.

The Simulink Real-Time domain model looks like this figure. See example model
dslrtSGFPGAloopback_slrt.

 FPGA Programming and Configuration

1-13

Step 7. Simulink Real-Time Interface Subsystem Integration

In the Simulink Real-Time interface subsystem mask, set three parameters:

• Device index
• PCI slot
• Sample time

To integrate the interface subsystem:

1 In the Simulink editor, open gm_dslrtSGFPGAloopback_fpga_slrt.
2 Copy the Simulink Real-Time interface subsystem and paste it into the Simulink Real-

Time domain model.
3 Save or discard gm_dslrtSGFPGAloopback_fpga_slrt. You can recreate it as

required using the HDL Coder HDL Workflow Advisor.
4 In the domain model, connect signals to the inports and outports of the interface

subsystem.
5 Set the block parameters according to the FPGA I/O boards in your Speedgoat target

machine.

1 FPGA Models

1-14

• If you have a single FPGA I/O board, leave the device index and PCI slot at the default
values. You can set the sample time or leave it at –1 for inheritance.

• If you have multiple FPGA I/O boards, give each board a unique device index.
• If you have two or more boards of the same type (for example, two Speedgoat IO331

boards), specify the PCI slot ([bus, slot]) for each board. Get this information with the
SimulinkRealTime.target.getPCIInfo function.

6 Save the model.

The updated Simulink Real-Time domain model looks like this figure. See example model
dslrtSGFPGAloopback_slrt_wiss.

Step 8. Real-Time Application Execution

To do this procedure, you must have already created a Simulink Real-Time domain model
that includes a Simulink Real-Time interface subsystem generated from the HDL Coder
HDL Workflow Advisor.

1 Configure the Speedgoat target machine and connect it to the development
computer.

 FPGA Programming and Configuration

1-15

2 Build and download the Simulink Real-Time application. The real-time application
loads onto the Speedgoat target machine and the FPGA algorithm bitstream loads
onto the FPGA.

3 If you are using I/O lines (channels), confirm that you have connected the lines to the
external hardware under test.

The start and stop of the Simulink Real-Time model controls the start and stop of the
FPGA algorithm. The FPGA algorithm executes at the clock frequency of the FPGA I/ O
board, while the real-time application executes in accordance with the model sample
time.

See Also
Subsystem | getPCIInfo

More About
• “HDL Workflow Advisor” (HDL Coder)
• “IP Core Generation Workflow for Speedgoat I/O Modules” (HDL Coder)
• “FPGA Subsystem Plan” on page 1-20
• “FPGA Synchronization Modes” on page 1-24
• “FPGA Clock Frequency” on page 1-22
• “Digital I/O with Speedgoat FPGA Board” on page 15-139
• “PLL-Based Interrupt Generation from FPGA Input” on page 15-146

1 FPGA Models

1-16

Interrupt Configuration
Simulink Real-Time software schedules the real-time application using either the internal
timer of the Speedgoat target machine (default) or an interrupt from an I/O board. You
can use your Speedgoat FPGA board to generate an interrupt, which allows you to:

• Schedule execution of the real-time application based on this interrupt (synchronous
execution). For this method, you must generate the interrupt periodically.

• Execute a designated subsystem in your real-time application (asynchronous
execution).

To use FPGA-based interrupts, set up and configure the FPGA domain and Simulink Real-
Time domain models.

FPGA Domain Model
In the FPGA domain subsystem, create the interrupt source for the real-time application
in one of the following ways.

Source Description
Internal A clock you create using Simulink blocks to create input signals. This

clock is a binary pulse train of zeros and ones (transition from 0 to 1 and
from 1 to 0). The clock generates an interrupt on a rising edge. The
following is an example of an internally generated interrupt source from
Simulink blocks. Connect the internally generated interrupt source to an
outport labeled INT.

 Interrupt Configuration

1-17

Source Description
External A clock signal that comes from a device outside the Speedgoat target

machine. You use a digital input pin to connect to this signal. The
following is an example of an externally generated interrupt source that
comes from TTL channel 8. Delay this source by one FPGA clock cycle and
connect to an outport labeled INT.

In both cases, wire the interrupt source to an outport in the FPGA subsystem. Assign the
outport as Interrupt from FPGA in the HDL Coder HDL Workflow Advisor task 1.2 Set
Target Interface.

You are now ready to set up interrupt support in the Simulink Real-Time domain model.

Simulink Real-Time Domain Model
Configure the model Simulink Real-Time domain model to set up interrupt support:

1 Open the Simulink Real-Time domain model.
2 In the Simulink editor, on the Real-Time tab, click Hardware Settings.
3 Navigate to node Simulink Real-Time Options, under node Code Generation.
4 From the Real-time interrupt source list, select one of the following:

• Auto (PCI only)
• The IRQ assigned to your FPGA board

5 From the I/O board generating the interrupt parameter, select your FPGA board,
for example, Speedgoat_IO331.

6 Add the Simulink Real-Time interface subsystem to the model.
7 Build and download the real-time application to the Speedgoat target machine.
8 When you start the real-time application, simulation updates occur when the

application receives an interrupt from the FPGA I/O board.

1 FPGA Models

1-18

See Also

More About
• “PLL-Based Interrupt Generation from FPGA Input” on page 15-146

 See Also

1-19

FPGA Subsystem Plan
Before you work with the HDL Coder HDL Workflow Advisor, plan how to prepare the
FPGA subsystem for HDL code generation and FPGA synthesis.

Target Device
First, to decide which FPGA to target for code generation, consult the Speedgoat data
sheet for information:

• Availability and cost
• Bus compatibility
• Size
• Pinouts
• Clock speed

The example procedure uses the Simulink Real-Time FPGA workflow and the Speedgoat
IO331 FPGA IO board as target platform. This choice requires that you use the Xilinx ISE
synthesis tool.

For information about other target devices, see “Supported Third-Party Tools and
Hardware” (HDL Coder).

FPGA Synchronization Mode
To select the processor/FPGA synchronization mode, you must decide which of the FPGA
synchronization modes to use:

• Free running
• Coprocessing — blocking
• Coprocessing — nonblocking with delay.

For more information, see “FPGA Synchronization Modes” on page 1-24.

FPGA Inports and Outports
Inports and outports can transmit signal data between the Speedgoat target machine and
the FPGA over the PCI bus. Alternatively, they can map to I/O channels for communicating

1 FPGA Models

1-20

with external devices. For connector pin and I/O channel assignments of your supported
FPGA I/O board, see the board reference page for your board.

In addition to the Port Name and Port Type (Inport or Outport), to specify the I/O
interface, see:

• Data Type—Encodes such attributes as width and sign. Data types must map
consistently to their corresponding I/O pins. An inport of type Boolean requires 1 bit,
one of type uint32 requires 32 bits, and so on. For example, you cannot connect an
inport of type uint32 to an FPGA I/O interface of type TTL I/O channel [0:7]; it
requires TTL I/O channel [0:31].

• Target Platform Interfaces—Encodes the I/O channels on the FPGA and their
functional type. For a single-ended interface (TTL, LVCMOS), one channel maps to one
connector pin. For a differential interface (RS422, LVDS), one channel maps to two
connector pins. To discover the mapping for a particular pin, see the pin connector
map provided with the board description.

I/O channels can also map to a predefined specification or role (PCI Interface,
Interrupt from FPGA).

For information on using FPGA interrupts, see “Interrupt Configuration” on page 1-17.
• Bit Range/Address/FPGA Pin—Encodes the pins on the target platform to which the

inports and outports are assigned, along with the channel number used by the port.
For specification PCI Interface, Bit Range/Address/FPGA Pin encodes the PCI
address used by the port.

If vector inports or outports are required, specify a vector port:

• Inport — Add a mux outside the subsystem that connects to a demux inside the
subsystem.

• Outport – Add a mux inside the subsystem that connects to a demux outside the
subsystem.

• Inport and Outport – Configure the port dimension to be greater than 1.

To achieve a simultaneous update of vector port elements, Workflow Advisor
automatically inserts a strobe and specifies a strobe offset. For more information, see “IP
Core User Guide” (HDL Coder).

If you have specified vector inports or outports, before generating code, you must select
the Scalarize vector ports check box. This check box is on the Coding style tab of node

 FPGA Subsystem Plan

1-21

Global Settings, under node HDL Code Generation in the Configuration Parameters
dialog box.

FPGA Clock Frequency
The FPGA system clock frequency defaults to the fixed FPGA input clock frequency. The
fixed FPGA input clock frequency is shown in the FPGA input clock frequency (MHz)
box. You can specify another frequency in this box. If the FPGA clock circuits cannot
generate the specified value exactly, HDL Coder HDL Workflow Advisor generates the
closest match. The closest match, Fsystem, is based on the following formula:

Fsystem = Finput * ClkFxMultiply/ClkFxDivide

Finput is the fixed FPGA input clock frequency. ClkFxMultiply and ClkFxDivide are
integers.

FPGA Deployment
The FPGA deployment procedure depends upon the FPGA model.

Deploy the IO321 and IO331 FPGAs

When HDL Coder HDL Workflow Advisor generates the programmed FPGA subsystem, it
writes an SLX file (gm_mdlname.slx) and a C file
(blkorrefmdlname_topiospeedgoat#.c) into the model folder. The SLX file contains
the FPGA subsystem. The C file contains the bitstream.

For example, assume that model fpga_model.slx contains a Subsystem block named
fpga_subsystem, and that you configure the FPGA target platform for the model as
Speedgoat IO331. Then HDL Coder HDL Workflow Advisor generates the following files:

gm_fpga_model.slx
fpga_subsystem_topIO331.c

When you build your domain model with the integrated subsystem, the model builder:

1 Reads the C file.
2 Inserts its contents into the real-time application.
3 Packages the real-time application as an MLDATX file.

1 FPGA Models

1-22

The model builder assumes that the SLX file and the C file are in the same folder. If you
deploy the model to another location on the disk, copy the SLX file and the C file to the
new location.

Deploy the IO333 FPGA

When HDL Coder HDL Workflow Advisor generates the programmed FPGA subsystem, it
writes an SLX file (gm_mdlname.slx) and an MCS file
(blkorrefmdlname_timestamp.mcs) into the model folder. The SLX file contains the
FPGA subsystem. The MCS file contains the bitstream.

For example, assume that model fpga_model.slx contains a Subsystem block named
fpga_subsystem, and that you configure the FPGA target platform for the model as
Speedgoat IO333. Then HDL Coder HDL Workflow Advisor generates the following files:

gm_fpga_model.slx
fpga_subsystem_201703301740.mcs

When you build your domain model with the integrated subsystem, the model builder:

1 Generates the real-time application.
2 Packages the real-time application and the MCS file as an MLDATX file.

The model builder searches for the MCS file on the MATLAB® path. If you deploy the
model to another location on the disk, add the new location to the path.

See Also

More About
• “Supported Third-Party Tools and Hardware” (HDL Coder)
• “IP Core User Guide” (HDL Coder)
• “FPGA Synchronization Modes” on page 1-24
• “Interrupt Configuration” on page 1-17

 See Also

1-23

FPGA Synchronization Modes
In Simulink Real-Time, an FPGA operates in three synchronization modes:

• Free running
• Coprocessing — blocking
• Coprocessing — nonblocking with delay

• Free running (default) — The CPU of the Speedgoat target machine and the FPGA
each run nonsynchronized, continuously, and in parallel. Select this mode when you
want the CPU to run continuously without interrupts. For example, select this mode
when the model is processing continuous PWM output.

The CPU:

1 Strobes data out of the FPGA.
2 Reads results from the FPGA outputs.
3 Writes data to the FPGA inputs.
4 Strobes the data into the FPGA.

The shaded areas indicate that the processor and FPGA are running continuously.

• Coprocessing — blocking — The CPU of the Speedgoat target machine and the
FPGA run synchronized and in tandem. Select this mode when the FPGA execution
time is short compared to the target computer sample time. For example, select this
mode when the model requires the FPGA results to continue processing.

The CPU:

1 FPGA Models

1-24

1 Writes data to the FPGA inputs.
2 Strobes the data into the FPGA.
3 Waits for the FPGA to finish executing.
4 Reads results from the FPGA outputs.

• Coprocessing — nonblocking with delay — The CPU of the Speedgoat target
machine and the FPGA run synchronized and in tandem. Select this mode when the
FPGA execution time is long compared to the Speedgoat target machine sample time.
For example, select this mode to manage multiple FPGAs effectively in parallel.

The CPU:

1 Waits for the FPGA to finish executing.
2 Reads the data from the previous time step.
3 Writes new data to the FPGA inputs.
4 Strobes the data into the FPGA.

 FPGA Synchronization Modes

1-25

Functional Mockup Units and
Simulink Real-Time

2

Apply Functional Mockup Units with Simulink Real-Time
After you create a model that contains an FMU block, you can build and download the
model to a target computer by using Simulink Real-Time. The following limitations apply:

• Simulink Real-Time supports FMU blocks for Co-Simulation mode. Simulink Real-Time
does not support FMU blocks for Model Exchange mode.

• Simulink Real-Time does not support FMU blocks within a referenced model. FMU
blocks must be at the top level of the model.

• Simulink Real-Time generates a mask dialog box that contains both numerical-valued
and string-valued parameters. However, Simulink Real-Time generates code for only
numerical- valued parameters.

To convert a Simulink model that contains FMU blocks to a Simulink Real-Time model, set
the model Configuration Parameters to values compatible with real-time execution:

• In the Code Generation pane, set System target file to slrt.tlc.
• In the Solver pane:

• Set Type to Fixed-step.
• Set Fixed-step size to a step size compatible with the real-time requirements of

your model.

You can then build and download the model to a target computer and run the real-time
application. The build and download process downloads the required FMU binary files.

To open an example model that contains FMU blocks running in Simulink Real-Time, type
dslrt_bouncing_cs in the MATLAB Command Window.

Build Considerations
When you build an FMU, dependencies on external DLLs are an important consideration.
For example, if the compiler command line does not provide the MT flag, the linker links
the .obj file with MSVCRT.lib. This library depends on many DLLs that are unavailable
on a Simulink Real-Timetarget computer.

The MT flag on the compiler command line makes the real-time application use the
multithread, static version of the run-time library. With MT, the compiler places
LIBCMT.lib into the .obj file, so the linker uses LIBCMT.lib to resolve external
symbols.

2 Functional Mockup Units and Simulink Real-Time

2-2

To build a FMU for a Simulink Real-Time real-time application, in the makefile to build a
FMU, change from:

cl /wd4090 /nologo %DEF% ..\%1\%1.c /I ..\. /I ..\..\%FMI_DIR%\include

Change to:

cl /MT /wd4090 /nologo %DEF% ..\%1\%1.c /I ..\. /I ..\..\%FMI_DIR%\include

Note Note: Simulink Real-Time supports FMU blocks that comply with FMU v1.0. Blocks
complying with FMU v2.0 are not supported.

See Also
FMU

More About
• “Import FMUs” (Simulink)

External Websites
• http://fmi-standard.org/

 See Also

2-3

http://fmi-standard.org/

Third-Party Calibration Support

• “Calibrate Real-Time Application” on page 3-2
• “Prepare ASAP2 Data Description File” on page 3-4
• “Calibrate Parameters with Vector CANape” on page 3-10
• “Vector CANape Limitations” on page 3-12
• “Troubleshoot Vector CANape Operation” on page 3-13
• “Calibrate Parameters with ETAS Inca” on page 3-15
• “ETAS Inca Limitations” on page 3-18
• “Troubleshoot ETAS Inca Operation” on page 3-19

3

Calibrate Real-Time Application
Simulink Real-Time supports interaction with third-party calibration tools such as Vector
CANape (www.vector.com) and ETAS Inca (www.etas.com). Use these tools for:

• Parameter display and tuning
• Calibration data saving, restoring, and swapping by page
• Signal value streaming

These tools run in XCP master mode. Simulink Real-Time emulates an electronic control
unit (ECU) operating in XCP slave mode. To enable a real-time application to work with
the third-party software:

• Configure the third-party software to communicate with the real-time application as an
ECU.

• Provide a standard TCP/IP physical layer between the development and target
computers. Simulink Real-Time supports third-party calibration software only through
TCP/IP.

• Generate a real-time application with signal and parameter attributes that are
consistent with A2L (ASAP2) file generation. See “Export ASAP2 File for Data
Measurement and Calibration” (Simulink Coder).

• Use the build process to generate model_slrt.a2l (ASAP2) files that the software
can load into its database. The generated file contains signal and parameter access
information for the real-time application and XCP-related sections and memory
addresses.

If your model includes referenced models, the build creates a model_slrt.a2l file
for the real-time application and separate refmodel_slrt.a2l files for each
referenced model.

Note You cannot configure third-party software for calibration with only the A2L files
that Simulink Coder™ generates. These files do not contain XCP-related sections and
memory addresses. Simulink Real-Time adds this information during the build process.

3 Third-Party Calibration Support

3-2

https://www.vector.com
https://www.etas.com

See Also

More About
• “Export ASAP2 File for Data Measurement and Calibration” (Simulink Coder)
• “Prepare ASAP2 Data Description File” on page 3-4
• “Calibrate Parameters with Vector CANape” on page 3-10
• “Calibrate Parameters with ETAS Inca” on page 3-15
• “XCP Master Mode”

External Websites
• www.vector.com
• www.etas.com

 See Also

3-3

https://www.vector.com
https://www.etas.com

Prepare ASAP2 Data Description File
This example shows how to configure a Simulink Real-Time model so that the build
generates an ASAP2 (A2L) data description file for the real-time application. The real-time
application models a damped oscillator that feeds into 1-D and 2-D lookup tables, which
invert and rescale the input waveform.

This example uses ex_slrt_cal_osc (open_system(docpath(fullfile(docroot,
'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc')))), which requires
ex_slrt_cal_osc_data.mat (load(docpath(fullfile(docroot, 'toolbox',
'xpc', 'examples', 'ex_slrt_cal_osc_data.mat')))).

3 Third-Party Calibration Support

3-4

The goal of calibration is reducing the ringing in signals DampedOsc, L_1D, and L_2D.

Initial Setup
For best results, load the MATLAB workspace variables before you load the model that
uses them.

 Prepare ASAP2 Data Description File

3-5

1 Load workspace variables for the example model from
ex_slrt_cal_osc_data.mat (load(docpath(fullfile(docroot,
'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc_data.mat')))).

The MATLAB workspace variables have the following functions:

• Kg — Parameter object for the Gain1 block
• DampedOsc, SignalGenerator, L_1D, L_2D — Signal objects for output signals
• ydata, zdata — 1-D and 2-D lookup tables respectively
• xbreak1, xbreak2, ybreak — Indexes into lookup tables

2 Open ex_slrt_cal_osc (open_system(docpath(fullfile(docroot,
'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc')))).

Set Up Parameters
Set up global parameter tuning by using Simulink parameter objects.

1 In ex_slrt_cal_osc, on the Modeling tab, click Design > Model Explorer .
2 Select Base Workspace in the Model Hierarchy pane.
3 Check that the Kg parameter object exists and has these properties:

• Value — 400
• Data type — double
• Storage class — ExportedGlobal

4 If the parameter object does not exist, add it. On the toolbar, click the Add Simulink
Parameter button .

5 Open ex_slrt_cal_osc/Gain1.
6 Check that you have set the Gain value to the parameter object Kg.

Set Up Signals
As a best practice, set up signal viewing by using Simulink signal objects.

1 In ex_slrt_cal_osc, on the Modeling tab, click Design > Model Explorer .
2 Select Base Workspace in the Model Hierarchy pane.

3 Third-Party Calibration Support

3-6

3 Check that the DampedOsc signal object exists and has these properties:

• Minimum — −10
• Maximum — 10
• Data type — double
• Storage class — ExportedGlobal.

4 Check that the SignalGenerator signal object exists and has these properties:

• Minimum — −10
• Maximum — 10
• Data type — double
• Storage class — ExportedGlobal.

5 Check that the L_1D signal object exists and has these properties:

• Minimum — −15
• Maximum — 15
• Data type — double
• Storage class — ExportedGlobal.

6 Check that the L_2D signal object exists and has these properties:

• Minimum — −15
• Maximum — 15
• Data type — double
• Storage class — ExportedGlobal.

7 If a signal does not exist, add it. On the toolbar, click the Add Simulink Signal
button .

8 For each signal, open its Properties dialog box.
9 Check that you selected the Signal name must resolve to Simulink signal object

and the Test point check boxes.

Set Up Lookup Tables
The example model contains 1-D and 2-D lookup tables.

 Prepare ASAP2 Data Description File

3-7

1 Open the block parameters for the 1-D Lookup Table block.
2 In the Table and Breakpoints pane, check the following settings:

• Number of table dimensions — 1
• Table data — ydata
• Breakpoints specification — Explicit values
• Breakpoints 1 — xbreak1

3 Open the block parameters for the 2-D Lookup Table block.
4 In the Table and Breakpoints pane, check the following settings:

• Number of table dimensions — 2
• Table data — zdata
• Breakpoints specification — Explicit values
• Breakpoints 1 — xbreak2
• Breakpoints 2 — ybreak

To view the contents of the lookup tables, click Edit table and breakpoints, and then
click Plot > Mesh.

Generate Data Description File
1 Open the Configuration Parameters. On the Real-Time tab, select Prepare >

Hardware Settings.
2 In the left pane, click the Simulink Real-Time Options node.
3 In the Miscellaneous options area, select the Generate INCA/CANape

extensions (disables the Simulation Data Inspector and Dashboard blocks)
check box.

This option enables real-time applications to generate an ASAP2 (A2L) data
description file. You can then use third-party calibration software.

4 Build the model.

The build produces a file named ex_slrt_cal_osc_slrt.a2l in the working
folder. You can now connect to the target with a third-party calibration tool.

3 Third-Party Calibration Support

3-8

See Also
“Generate INCA/CANape extensions (disables the Simulation Data Inspector and
Dashboard blocks)” | n-D Lookup Table

More About
• “Calibrate Parameters with Vector CANape” on page 3-10
• “Calibrate Parameters with ETAS Inca” on page 3-15

External Websites
• www.vector.com
• www.etas.com

 See Also

3-9

https://www.vector.com
https://www.etas.com

Calibrate Parameters with Vector CANape
This example shows how to view signals and tune parameters by using Vector CANape.
You must have already completed the steps in “Prepare ASAP2 Data Description File” on
page 3-4.

You also must be familiar with the Vector CANape user interface. For information about
the user interface, see the vendor documentation (www.vector.com).

Prepare Project
1 Build and download real-time application ex_slrt_cal_osc.
2 Open Vector CANape.
3 Create a Vector CANape project with project name ex_slrt_cal_osc.

Accept the default folder.

Prepare Device
1 From ex_slrt_cal_osc_slrt.a2l in your build folder, create an XCP device

named ex_slrt_cal_osc_slrt.

Do not configure dataset management.
2 Select your local computer Ethernet adapter as the Ethernet channel
3 Accept the remaining defaults.
4 Upload data from the device.

Configure Signals and Parameters
1 Open device ex_slrt_cal_osc_slrt, and then open

ex_slrt_cal_osc_slrt.a2l.
2 Add signals DampedOsc, SignalGenerator, L_1D, and L_2D in separate display

windows.
3 To make the waveform easier to evaluate, set the time and y-axis scaling.

For example, try the following settings for DampedOsc:

3 Third-Party Calibration Support

3-10

https://www.vector.com

• y-axis min home value — –25
• y-axis max home value — 25
• Min home time-axis value — 0 s
• Max home time-axis value — 0.1 s
• Time duration — 0.1 s

4 Open the measurement list.
5 To set the required sample time for a signal, open the measurement properties for

the signal. Select the required sample time from the measurement mode list.

The default sample time is the base sample time.
6 Add a graphic control on parameter Kg.

Perform Signal Measurement and Parameter Calibration
1 Start the Vector CANape measurement.
2 In Simulink Real-Time Explorer, start the real-time application.

The signal windows show the four waveforms, corresponding to the displays on the
target computer screen.

3 To shorten the ring time on DampedOsc, L_1D, and L_2D, set parameter Kg to, for
example, 800.

4 As required, toggle between calibration RAM active and inactive.

See Also

More About
• “Prepare ASAP2 Data Description File” on page 3-4
• “Vector CANape Limitations” on page 3-12
• “Troubleshoot Vector CANape Operation” on page 3-13

External Websites
• www.vector.com

 See Also

3-11

https://www.vector.com

Vector CANape Limitations
For Vector CANape, the Simulink Real-Time software does not support:

• Starting and stopping the real-time application by using Vector CANape commands.

To start and stop the real-time application on the target computer, use the Simulink
Real-Time start and stop commands, for example start(tg), stop(tg).

• Vector CANape flash programming.
• Multiple simultaneous Vector CANape connections to a single target computer.

Event mode data acquisition has the following limitations:

• Every piece of data that the Simulink Real-Time software adds to the event list slows
the real-time application. The amount of data that you can observe depends on the
model sample time and the speed of the target computer. It is possible to overload the
target computer CPU to where data integrity is reduced.

• You can trace only signals and scalar parameters. You cannot trace vector parameters.

3 Third-Party Calibration Support

3-12

Troubleshoot Vector CANape Operation
My third-party calibration tool (Vector CANape) is not working with the real-time
application.

What This Issue Means
You can use the Vector CANape tool to view signals and tune parameters in the real-time
application. For more information, see the steps in “Prepare ASAP2 Data Description File”
on page 3-4. In addition to the limitations listed in “Vector CANape Limitations” on page
3-12, there are various issues that can prevent operation of this tool.

Try This Workaround
For Vector CANape tool issues, try these workarounds.

Simulation Data Inspector in Use

Simulation Data Inspector and the third-party calibration tools (Vector CANape and ETAS
Inca) are mutually exclusive. If you use the Simulation Data Inspector to view signal data,
you cannot use the calibration tools. If you use the calibration tools, you cannot use the
Simulation Data Inspector to view signal data.

Master Cannot Connect

Check the IP address of the target computer associated with the model and compare it to
the address stored in the ASAP2 file.

ASAP2 File Out of Date

When you rebuild a Simulink Real-Time application, update the ASAP2 file loaded in the
calibration tool with the new version of the file. The ASAP2 file is valid only until the next
time that you build the application.

 Troubleshoot Vector CANape Operation

3-13

See Also

More About
• “Prepare ASAP2 Data Description File” on page 3-4
• “Vector CANape Limitations” on page 3-12

External Websites
• www.vector.com

3 Third-Party Calibration Support

3-14

https://www.vector.com

Calibrate Parameters with ETAS Inca
This example shows how to view signals and tune parameters by using ETAS Inca. You
must have already completed the steps in “Prepare ASAP2 Data Description File” on page
3-4.

You also must be familiar with the ETAS Inca user interface. For information about the
user interface, see the vendor documentation (www.etas.com).

Prepare Database
1 Build and download real-time application ex_slrt_cal_osc.
2 Open ETAS Inca.
3 Add an ETAS Inca database with folder named SLRTDatabase.
4 Add subfolders named Experiment, Project, and Workspace.

Prepare Project
1 Under folder Project, add an ECU project.
2 When prompted, select A2L file ex_slrt_cal_osc_slrt.a2l in your build folder.

Ignore the prompt for a HEX file.

If you change and rebuild the real-time application, delete the ECU project and
recreate it with the new A2L file.

Prepare Workspace
1 Under folder Workspace, add workspace ex_slrt_cal_osc_wksp.
2 Add project ex_slrt_cal_osc_slrt to workspace ex_slrt_cal_osc_wksp.
3 When prompted, add an Ethernet system XCP device to the workspace.
4 Configure the XCP device and initialize it. Auto configure the ETAS network.
5 To upload data from the device hardware, use enhanced operations on memory

pages.

Data is uploaded from the real-time application on the target computer.

 Calibrate Parameters with ETAS Inca

3-15

https://www.etas.com

Prepare Experiment
1 Under folder Experiment, add experiment ex_slrt_cal_osc_exp.
2 Add experiment ex_slrt_cal_osc_exp to workspace ex_slrt_cal_osc_wksp.

Configure Signals and Parameters
1 Start experiment ex_slrt_cal_osc_exp.
2 To create graphic controls for the variables, add variables Kg, DampedOsc,

SignalGenerator, L_1D, L_2D, and zdata.
3 Add YT oscilloscopes for DampedOsc, SignalGenerator, L_1D, L_2D.
4 For each signal, set the sample time to the base sample time of the real-time

application (250 µs).

Perform Signal Measurement and Parameter Calibration
1 Start the ETAS Inca measurement.
2 In Simulink Real-Time Explorer, start the real-time application.

The signal windows show the four waveforms, corresponding to the displays on the
target computer screen.

3 To shorten the ring time on DampedOsc, L_1D, and L_2D, set parameter Kg to, for
example, 800.

4 As required, toggle between reference page and working page.
5 To freeze the parameter set on the target computer, use the freeze working data

command.

To save the working data on the development computer, use the save working data
command.

See Also

More About
• “Prepare ASAP2 Data Description File” on page 3-4

3 Third-Party Calibration Support

3-16

• “ETAS Inca Limitations” on page 3-18
• “Troubleshoot ETAS Inca Operation” on page 3-19

External Websites
• www.etas.com

 See Also

3-17

https://www.etas.com

ETAS Inca Limitations
For ETAS Inca, the Simulink Real-Time software does not support:

• Starting and stopping the real-time application by using ETAS Inca commands.

To start and stop the real-time application on the target computer, use the Simulink
Real-Time start and stop commands, for example start(tg), stop(tg).

• ETAS Inca flash programming.
• Multiple simultaneous ETAS Inca connections to a single target computer.

Event mode data acquisition has the following limitations:

• Every piece of data that the Simulink Real-Time software adds to the event list slows
the real-time application. The amount of data that you can observe depends on the
model sample time and the speed of the target computer. It is possible to overload the
target computer CPU to where data integrity is reduced.

• You can trace only signals and scalar parameters. You cannot trace vector parameters.

3 Third-Party Calibration Support

3-18

Troubleshoot ETAS Inca Operation
Investigate issues that can occur when ETAS Inca controls a real-time application.

My third-party calibration tool (ETAS Inca) is not working with the real-time application.

What This Issue Means
You can use the ETAS Inca tool to view signals and tune parameters in the real-time
application. For more information, see the steps in “Prepare ASAP2 Data Description File”
on page 3-4. In addition to the limitations listed in “ETAS Inca Limitations” on page 3-18,
there are various issues that can prevent operation of this tool.

Try This Workaround
For ETAS Inca tool issues, try these workarounds.

Simulation Data Inspector in Use

Simulation Data Inspector and the third-party calibration tools (Vector CANape and ETAS
Inca) are mutually exclusive. If you use the Simulation Data Inspector to view signal data,
you cannot use the calibration tools. If you use the calibration tools, you cannot use the
Simulation Data Inspector to view signal data.

Master Cannot Connect

Check the IP address of the target computer associated with the model and compare it to
the address stored in the ASAP2 file.

ASAP2 File Out of Date

When you rebuild a Simulink Real-Time application, update the ASAP2 file loaded in the
calibration tool with the new version of the file. The ASAP2 file is valid only until the next
time that you build the application.

Cannot Disable Freeze Mode

Remove the dataset file from the target file system and reset the parameters to the
original values specified in your model. The dataset file is named
flashdata_model_name.dat.

 Troubleshoot ETAS Inca Operation

3-19

See Also

More About
• “Prepare ASAP2 Data Description File” on page 3-4
• “ETAS Inca Limitations” on page 3-18
• “Troubleshoot ETAS Inca Operation” on page 3-19

External Websites
• www.etas.com

3 Third-Party Calibration Support

3-20

https://www.etas.com

Incorporating Fortran S-Functions

4

Fortran S-Functions
The Simulink Real-Time product supports Fortran in Simulink models using S-functions.
For more details, see “Create Level-2 Fortran S-Functions” (Simulink) and “Port Legacy
Code” (Simulink).

Prerequisites
You must have Simulink Real-Time Version 1.3 or later to use Fortran for real-time
applications. The Simulink Real-Time product supports the Fortran compilers listed here:

www.mathworks.com/support/compilers/current_release

Simulink S-Function Example
The Simulink examples folder contains a tutorial and description on how to incorporate
Fortran code into a Simulink model using S-functions. To access the tutorial and
description:

1 Open “Custom Code and Hand Coded Blocks using the S-function API” (Simulink)
2 Open the associated model.
3 Open the Fortran S-functions example model. Fortran S-functions and associated

templates appear.

Steps to Incorporate Fortran
This topic lists the general steps to incorporate Fortran code into a real-time application.
Detailed commands follow in the accompanying examples.

1 Using the Fortran compiler, compile the Fortran subroutines (*.f). Specify particular
compiler options.

2 Write a Simulink C-MEX wrapper S-function. This wrapper S-function calls one or
more of the Fortran subroutines in the compiled Fortran object code from step 1.

3 Use the mex function to compile this C-MEX S-function using a Microsoft® Visual C+
+® compiler. Define several Fortran run-time libraries to be linked in.

This step creates the Simulink S-function MEX-file.

4 Incorporating Fortran S-Functions

4-2

https://www.mathworks.com/support/compilers.html

4 To validate the compiled Fortran code and wrapper S-function, run a simulation C-
MEX file with the Simulink software.

5 Copy the relevant Fortran run-time libraries to the real-time application build folder.
6 Define the Fortran libraries, and the Fortran object files from step 1, in the Simulink

Coder dialog box of the Simulink model. Define these libraries and files as additional
components to be linked in when the real-time application link takes place.

7 Initiate the Simulink Real-Time specific Simulink Coder build procedure for the
example model. Simulink Coder builds and downloads Simulink Real-Time onto the
target computer.

See Also

More About
• “Create Level-2 Fortran S-Functions” (Simulink)
• “Port Legacy Code” (Simulink)
• “Fortran S-Function Examples” (Simulink)

 See Also

4-3

Real-Time Application Setup

5

Real-Time Application Environment

• “Default Target Computers” on page 5-2
• “Command-Line C Compiler Configuration” on page 5-3
• “Command-Line Setup” on page 5-5
• “Command-Line PCI Bus Ethernet Setup” on page 5-6
• “Ethernet Card Selection by Index” on page 5-9
• “Command-Line Ethernet Card Selection by Index” on page 5-10
• “Command-Line Target Computer Settings” on page 5-13
• “Command-Line Target Computer Boot Methods” on page 5-15
• “Command-Line Network Boot Method” on page 5-16
• “Command-Line Standalone Boot Method” on page 5-18

5

Default Target Computers
When you start Simulink Real-Time Target Computer Manager for the first time, it opens
a default node, TargetPC1. You can configure this node for a target computer, then
connect the node to the target computer.

You can add other target computer nodes and designate one of them as the default target
computer instead of the first one. To set a target computer node as the default, select the
node in the Target Computer manager and select the Default check box next to the
target computer Name box. The default target computer node has a (default) label.

If you delete a default target computer node, the target computer node preceding it
becomes the default target computer node. The last target computer node becomes the
default target computer node and cannot be deleted.

If you want to use the Simulink Real-Time command-line interface to work with the target
computer, you must indicate which target computer the command is interacting with. If
you do not identify a particular target computer, the Simulink Real-Time software uses the
default target computer.

TheSimulinkRealTime target computer environment, manages collective and individual
target computer environments. See “Command-Line Setup” on page 5-5.

When you call SimulinkRealTime.getTargetSettings without arguments (for
example, tg = SimulinkRealTime.getTargetSettings), the constructor gets the
real-time environment settings for the default target computer.

When you call the slrt function without arguments, the constructor uses the link
properties of the default target computer to communicate with the target computer.

tg = slrt;
% create a target object tg for the default target computer TargetPC1

5 Real-Time Application Environment

5-2

Command-Line C Compiler Configuration
To configure the development computer for the C compiler using MATLAB language, use
this procedure.

The command mex -setup sets the default compiler for Simulink Real-Time builds,
provided the MEX compiler is a supported Microsoft compiler. Use slrtsetCC -setup
only if you require different compilers for MEX and Simulink Real-Time.

By default, the Microsoft Visual Studio® 2015 installer does not install the C++ compiler
that Simulink Real-Time requires. To install the C++ compiler, perform a custom install
and select the C++ compiler. If you have already installed Microsoft Visual Studio with
the default configuration, rerun the installer and select the modify option.

1 Install a supported C compiler on the development computer.

For more about the Simulink Real-Time C compiler requirements, see
www.mathworks.com/support/compilers/current_release.

2 In the Command Window, type:

slrtsetCC setup

The function queries the development computer for C compilers that the Simulink
Real-Time environment supports. It returns output like the following:
Select your compiler for Simulink Real-Time.

[1] Microsoft Visual C++ Compilers 2008 Professional Edition (SP1) in
 c:\Program Files (x86)\Microsoft Visual Studio 9.0
[2] Microsoft Visual C++ Compilers 2010 Professional in
 C:\Program Files (x86)\Microsoft Visual Studio 10.0

[0] None

Compiler:

3 At the Compiler prompt, enter the number for the compiler that you want to use.
For example, 2.

The function verifies that you have selected the required compiler:

Verify your selection:

Compiler: Microsoft Visual C++ Compilers 2010 Professional
Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

Are these correct [y]/n?

 Command-Line C Compiler Configuration

5-3

https://www.mathworks.com/support/compilers.html

4 Type y or press Enter.

5 Real-Time Application Environment

5-4

Command-Line Setup
Use the following procedures to configure single- and multiple-target systems.

You must have installed and configured a C compiler. For more information, see
“Command-Line C Compiler Configuration” on page 5-3.

1 “Command-Line PCI Bus Ethernet Setup” on page 5-6
2 “Command-Line Target Computer Settings” on page 5-13
3 “Command-Line Target Computer Boot Methods” on page 5-15

The next task is “Run Confidence Test on Configuration”.

 Command-Line Setup

5-5

Command-Line PCI Bus Ethernet Setup
If your Speedgoat target computer has a PCI bus, use an Ethernet card for the PCI bus.
The PCI bus has a faster data transfer rate than the other bus types.

PCI Bus Ethernet Protocol Hardware

To install PCI bus Ethernet protocol interface hardware in your Speedgoat target
computer, contact Speedgoat support.

1 If the target computer already contains one or more Ethernet cards, to get a list of
these Ethernet cards, in the Command Window, type:

tg = slrt;
getPCIInfo(tg, 'ethernet')

2 Assign a static IP address to the target computer Ethernet card.

Unlike the target computer, the development computer network adapter card can
have a dynamic host configuration protocol (DHCP) address and can be accessed
from the network. Configure the DHCP server to reserve static IP addresses to
prevent these addresses from being assigned to other systems.

3 Connect your target computer Ethernet card to your LAN using an unshielded
twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with RJ45
connectors. Both computers must have static IP addresses. If the development
computer has a second network adapter card, that card can have a DHCP address.

5 Real-Time Application Environment

5-6

Command-Line PCI Bus Ethernet Settings
With the installed PCI bus Ethernet card, to build and download a real-time application,
first specify the environment properties for the development and target computers.

Before you start, ask your system administrator for the following information for your
target computer:

• IP address
• Subnet mask address
• Port number (optional)
• Gateway (optional)

Use the following procedure for target TargetPC1:

1 Create a target object for this target computer and make it the default target. In the
Command Window, type:

tg = SimulinkRealTime.addTarget('TargetPC1');
setAsDefaultTarget(tg);

You apply other settings to this target object.
2 Set the IP address for your target computer. For example:

tg.TcpIpTargetAddress = '10.10.10.15';
3 Set the subnet mask address of your LAN. For example:

tg.TcpIpSubNetMask = '255.255.255.0';
4 Set the TCP/IP port (optional) to a value higher than '20000' and less than

'65536'. For example:

tg.TcpIpTargetPort = '22222';

This property is set by default to '22222', a value higher than the reserved area
(telnet, ftp, and so on).

5 Set the TCP/IP gateway (optional) to the gateway required to access the target
computer. For example:

tg.TcpIpGateway = '255.255.255.255';

 Command-Line PCI Bus Ethernet Setup

5-7

This property is set by default to '255.255.255.255', which means that you do not
use a gateway to connect to your target computer. If you connect your computers
with a crossover cable, leave this property as '255.255.255.255'.

If you communicate with the target computer from within your LAN, do not change
the default setting. If you communicate from a development computer within a LAN
different from your target computer, define a gateway and enter its IP address here.
In particular, create a gateway if you access the target computer via the Internet.

6 Set the bus type to 'PCI'.

tg.TcpIpTargetBusType = 'PCI';
7 Set the target driver to one of 'I210', 'I217', 'I8254x', 'I82559', 'X540',

'R8139', 'R8168', or 'Auto' (the default).

tg.TcpIpTargetDriver = 'Auto';

For target driver 'Auto', the software determines the target computer TCP/IP driver
from the card installed on the target computer. If a supported Ethernet card is not
installed in your target computer, the software returns an error.

8 If the target computer has multiple Ethernet cards, follow the procedure in
“Command-Line Ethernet Card Selection by Index” on page 5-10.

Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Computer Settings” on page 5-13.

See Also
getPCIInfo

More About
• “Ethernet Card Selection by Index” on page 5-9
• “Command-Line Ethernet Card Selection by Index” on page 5-10

5 Real-Time Application Environment

5-8

Ethernet Card Selection by Index
If the Speedgoat target machine has multiple Ethernet cards, you could be guided by
Speedgoat support to specify which card to use for the Ethernet link.

In the Speedgoat documentation, see information about the Ethernet index of the PCI
cards in the Speedgoat target machine.

Use the following procedure for target TargetPC1:

1 Open Simulink Real-Time Explorer. In the Command Window, type: slrtexplr.
2 In the Targets pane, expand the target computer node.
3 In the toolbar, click the Target Properties button .
4 From the Speedgoat target machine documentation, note the index of the Ethernet

card that you want to use for the Ethernet link, for example, 2.
5 In the Command Window, type:

tg.ShowHardware = 'off';
tg.EthernetIndex = '#';

is the index of the Ethernet card, for example, 2.
6 In slrtexplr, set Boot mode to Network.
7 Click Create boot disk.
8 Start the target computer from the target computer boot switch.

The kernel selects the specified Ethernet card as the target computer card, instead of
the default card with index number 0.

Repeat this procedure as required for each target computer.

 Ethernet Card Selection by Index

5-9

Command-Line Ethernet Card Selection by Index
If you are using multiple target computers that have multiple Ethernet cards, you must
specify which card to use for the Ethernet link. Use the following procedure to discover
the Ethernet index of the PCI cards on a specific target and specify which card to use.

Note For this procedure, you must be able to burn CDs on your development computer
and use network boot mode for routine target operations.

Use the following procedure for target TargetPC1:

1 Get the target object for this target computer and make it the default target. In the
Command Window, type:

tg = SimulinkRealTime.getTargetSettings('TargetPC1');
setAsDefaultTarget(tg);

You apply other settings to this object.
2 In the Command Window, type:

tg.ShowHardware = 'on';

With ShowHardware set, after the kernel starts, the development computer cannot
communicate with the target computer. When you have gathered your information, to
resume normal functionality, set this property to 'off', recreate the boot image, and
restart the target computer.

3 Set the Ethernet driver to the default:

tg.TcpIpTargetDriver = 'Auto';

If TcpIpTargetDriver is set to a specific driver, such as 'I82559', the kernel
displays only information about boards that use that driver.

4 Set the boot method to CD/DVD boot:

tg.TargetBoot='CDBoot';
5 Set the target monitor to print text only:

tg.TargetScope = 'Disabled' ;
6 Type SimulinkRealTime.createBootImage.

5 Real-Time Application Environment

5-10

The Simulink Real-Time software displays the following message and creates the
CD/DVD boot image.

Current boot mode: CDBoot
CD boot image is successfully created

Insert an empty CD/DVD. Available drives:
 [1] d:\
 [0] Cancel Burn

7 Insert the new boot disk and restart the target computer from the target computer
boot switch.

After the start is complete, the target monitor displays information about the
Ethernet cards in the target computer, for example:

index: 0, driver: R8139, Bus: 16, Slot: 8, Func: 0
index: 1, driver: I82559, Bus: 16, Slot: 9, Func: 0

Check that the boot order allows you to start the target computer from your disk. For
more information, see your Speedgoat target computer documentation. After the
kernel starts with ShowHardware 'on', the development computer cannot
communicate with the target computer.

8 Note the index of the Ethernet card you want to use for the Ethernet link, for
example, 2.

9 In the Command Window, type:

tg.ShowHardware = 'off';
tg.EthernetIndex = '#';

is the index of the Ethernet card, for example, 2.
10 Set the boot method back to network boot:

tg.TargetBoot= 'NetworkBoot';
11 Set the target monitor to graphics mode:

tg.TargetScope = 'Enabled' ;
12 Type SimulinkRealTime.createBootImage.
13 Start the target computer from the target computer boot switch.

The kernel selects the specified Ethernet card as the target computer card, instead of
the default card with index number 0.

 Command-Line Ethernet Card Selection by Index

5-11

Repeat this procedure as required for each target computer.

5 Real-Time Application Environment

5-12

Command-Line Target Computer Settings
To run a Simulink Real-Time model on a target computer, you must configure the target
settings to match the capabilities of the target computer.

Use the following procedure for target TargetPC1:

1 Get the target object for this target computer and make it the default target. In the
Command Window, type:

tg = SimulinkRealTime.getTargetSettings('TargetPC1');
setAsDefaultTarget(tg);

You apply other settings to this object.
2 Assign the following target computer settings as required:

• Target scope display

• tg.TargetScope='Enabled' (the default) — Use to display information,
such as a target scope, in graphic format.

• tg.TargetScope='Disabled' — Use to display information as text.

To use the full features of a target scope, install a keyboard on the target
computer.

• USB support

• tg.USBSupport='on' (the default) — Use to enable USB ports on the target
computer; for example, to connect a USB keyboard.

• tg.USBSupport='off' — Otherwise.
• Target RAM size

tg.TargetRAMSizeMB='Auto' (the default) — For more information, see your
Speedgoat target computer documentation to determine the amount of memory
installed in the target computer.

The Target RAM size parameter defines the total amount of installed RAM in the
target computer. This memory is the memory that is available for the kernel, real-
time application, data logging, and other functions that use the heap.

Target computer memory for the real-time application executable, the kernel, and
other uses is limited to a maximum of 4 GB.

 Command-Line Target Computer Settings

5-13

Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Computer Boot Methods” on page 5-15.

5 Real-Time Application Environment

5-14

Command-Line Target Computer Boot Methods
Speedgoat target machines come with DOS Loader software installed. You can set up the
DOS Loader boot method on your development computer or configure another boot
method. For more information about booting and kernel transfer, see your Speedgoat
target machine documentation or follow the link from “Speedgoat Target Computers and
Support”.

You can start your target computer with the Simulink Real-Time kernel using one of
several methods.

1 Select one of the following methods:

• “Command-Line Network Boot Method” on page 5-16
• “Command-Line Standalone Boot Method” on page 5-18

2 For boot methods other than StandAlone, perform “Run Confidence Test on
Configuration”.

For boot method StandAlone, create a model-specific confidence test, restart the
target computer, and run that confidence test. The default confidence test is not
intended for standalone execution.

 Command-Line Target Computer Boot Methods

5-15

Command-Line Network Boot Method
Speedgoat target machines come with DOS Loader software installed. You can set up the
DOS Loader boot method on your development computer or configure another boot
method. For more information about booting and kernel transfer, see your Speedgoat
target machine documentation or follow the link from “Speedgoat Target Computers and
Support”.

After you have configured the target computer network parameters, you can use a
dedicated Ethernet network to load and run the Simulink Real-Time kernel. You do not
need a boot CD or removable boot drive.

The network boot method has some limitations:

• Do not use the network boot method on a corporate or nondedicated network. Doing
so can interfere with dynamic host configuration protocol (DHCP) servers and cause
problems with the network.

• Your Ethernet card must be compatible with the Preboot eXecution Environment (PXE)
specification.

• If Stand Alone mode is enabled, you cannot start the target computer across the
network.

Before you start, establish the required Ethernet connection between development and
target computers using the procedures in “Command-Line PCI Bus Ethernet Setup” on
page 5-6.

Use the following procedure for target TargetPC1:

1 Get the target object for this target computer and make it the default target. In the
Command Window, type:

tg = SimulinkRealTime.getTargetSettings('TargetPC1');
setAsDefaultTarget(tg);

The contents of target object tg are printed in the Command Window. Some
properties can already have the required values.

2 Set network boot method:

tg.TargetBoot='NetworkBoot'
3 Set a TCP/IP address. Check that the subnet of this IP address is the same as the

development computer. Otherwise your network boot fails. For example, type:

5 Real-Time Application Environment

5-16

tg.TcpIpTargetAddress='192.168.7.1'
4 Set the target computer MAC address (in hexadecimal). For example, type:

tg.TargetMACAddress='01:23:45:67:89:ab'
5 In the Command Window, type:

SimulinkRealTime.createBootImage

The following message appears:

Current boot mode: NetworkBoot
Synchronizing network boot table....ok
Starting network boot server....ok
Creating batch file (slrtnetboot.bat)....ok
Network boot image created successfully

The software creates and starts a network boot server process on the development
computer. You start the target computer using this process.

A minimized icon () representing the network boot server process appears on the
bottom right of the development computer system tray.

Repeat this procedure as required for each target computer.

The next task is “Run Confidence Test on Configuration”.

 Command-Line Network Boot Method

5-17

Command-Line Standalone Boot Method
Speedgoat target machines come with DOS Loader software installed. You can set up the
DOS Loader boot method on your development computer or configure another boot
method. For more information about booting and kernel transfer, see your Speedgoat
target machine documentation or follow the link from “Speedgoat Target Computers and
Support”.

Using the MATLAB command line, you can configure the Simulink Real-Time software to
run as a standalone real-time application. For information on Boot mode Stand Alone,
see “Standalone Mode”.

To run in Stand Alone mode, the target computer and its DOS environment must meet
specific requirements and restrictions.

Command-Line Standalone Settings
Speedgoat target machines come with DOS Loader software installed. You can set up the
DOS Loader boot method on your development computer or configure another boot
method. For more information about booting and kernel transfer, see your Speedgoat
target machine documentation or follow the link from “Speedgoat Target Computers and
Support”.

Use the command line to set the kernel environment properties. When you are done, you
can create a standalone kernel combined with your real-time application.

For Boot mode Stand Alone, you do not create a Simulink Real-Time boot disk or
network boot image. Instead, you copy files created from the build process to the target
computer hard drive.

Use the following procedure for target TargetPC1:

1 Get the target object for this target computer and make it the default target. In the
Command Window, type:

tg = SimulinkRealTime.getTargetSettings('TargetPC1');
setAsDefaultTarget(tg);

You make other settings to this object.
2 Set network boot method:

5 Real-Time Application Environment

5-18

tg.TargetBoot='StandAlone';

Repeat this procedure as required for each target computer.

Real-Time Application Build
After you set the Simulink Real-Time boot mode to Stand Alone, you can use Simulink
Real-Time, Simulink Coder, and a C/C++ compiler in Stand Alone mode to build a
standalone kernel and real-time application with utility files.

1 In the Command Window, open your Simulink model, for example, ex_slrt_rt_osc
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_rt_osc')))).

2 Build the model. In the Simulink Editor, on the Real-Time tab, click Run on Target
> Build Application.

The Simulink Coder and Simulink Real-Time software create a folder,
ex_slrt_rt_osc_slrt_emb, containing the files that boot the target computer and
run the real-time application.

Repeat this procedure as required for each real-time application.

Real-Time Application Transfer and Boot Configuration
After building the kernel and real-time application on a development computer, transfer
the files to a target computer by using the SimulinkRealTime.fileSystem object
functions. Configure the target computer to run the real-time application upon startup.

For this procedure, your target computer must support network boot mode. If it does not
support network boot mode, see “Application Transfer and Boot Configuration with USB
Flash Drive”.

1 Restart the target computer in DOS mode and open the DOS prompt.

If the target computer was previously started from the network boot image, to
disable the network boot capability, kill the boot server from Windows® Task
Manager.

2 Start the target computer by using network boot mode.
3 In MATLAB, change to the folder that contains the kernel and real-time application

files.

 Command-Line Standalone Boot Method

5-19

4 Copy these files to the root folder of the target computer C:\ drive:

tg = slrt;
SimulinkRealTime.copyFileToTarget(tg,'xpckrnl.rtb')
SimulinkRealTime.copyFileToTarget(tg,'ex_slrt_rt_osc.mldatx')

5 Restart the target computer.

To boot the kernel and start the real-time application, the target computer executes
the following sequence of calls:

C:\autoexec.bat
C:\rttboot.com
C:\xpckrnl.rtb
C:\<application>.mldatx

Repeat this procedure for each target computer that you start in Stand Alone mode.

Continue by testing a real-time application in Stand Alone mode.

5 Real-Time Application Environment

5-20

Signals and Parameters

Changing parameters in your real-time application while it is running, viewing the
resulting signal data, and checking the results, are important prototyping tasks. The
Simulink Real-Time software includes command-line and graphical user interfaces to
complete these tasks.

• “Signal Monitoring Basics” on page 6-4
• “Monitor Signals with Simulink Real-Time Explorer” on page 6-6
• “Monitor Signals with MATLAB Language” on page 6-9
• “Instrument a Stateflow Subsystem” on page 6-11
• “Signal Group Monitoring Formats” on page 6-16
• “Monitor Stateflow States with MATLAB Language” on page 6-17
• “Animate Stateflow Charts with Simulink External Mode” on page 6-18
• “Signal Tracing Basics” on page 6-20
• “ Simulink Real-Time Scope Usage” on page 6-21
• “Target Scope Usage” on page 6-23
• “Configure Real-Time Target Scope Blocks” on page 6-25
• “Create Target Scopes with Simulink Real-Time Explorer” on page 6-31
• “Configure Scope Sampling with Simulink Real-Time Explorer” on page 6-37
• “Trigger Scopes with Simulink Real-Time Explorer” on page 6-41
• “Configure Target Scopes with Simulink Real-Time Explorer” on page 6-51
• “Configure Target Scopes with MATLAB Language” on page 6-55
• “Create Signal Groups with Simulink Real-Time Explorer” on page 6-58
• “Host Scope Usage” on page 6-61
• “Configure Real-Time Host Scope Blocks” on page 6-62
• “Create Host Scopes with Simulink Real-Time Explorer” on page 6-66
• “Configure the Host Scope Viewer” on page 6-71
• “Trace Signals with Simulink External Mode” on page 6-73

6

• “Inspect Simulink® Real-Time™ Data with Simulation Data Inspector” on page 6-76
• “Stream Signal Data from Target Computer to Simulation Data Inspector”

on page 6-82
• “Trace or Log Data with the Simulation Data Inspector” on page 6-86
• “External Mode Usage” on page 6-91
• “Signal Logging Basics” on page 6-92
• “File Scope Usage” on page 6-94
• “Configure Real-Time File Scope Blocks” on page 6-97
• “Create File Scopes with Simulink Real-Time Explorer” on page 6-102
• “Configure File Scopes with Simulink Real-Time Explorer” on page 6-106
• “Log Signal Data into Multiple Files” on page 6-110
• “Log Signal Data with Outport Blocks and Simulink Real-Time Explorer” on page 6-114
• “Log Signal Data with Outport Block and MATLAB Language” on page 6-120
• “Signal Logging Buffer Size” on page 6-127
• “Configure File Scopes with MATLAB Language” on page 6-128
• “Tune Parameters with Simulink Real-Time Explorer” on page 6-132
• “Create Parameter Groups with Simulink Real-Time Explorer” on page 6-137
• “Tune Parameters with MATLAB Language” on page 6-140
• “Tune Parameters with Simulink External Mode” on page 6-143
• “Save and Reload Parameters with MATLAB Language” on page 6-145
• “Tunable Block Parameters and Tunable Global Parameters” on page 6-148
• “Tune Inlined Parameters with Simulink Real-Time Explorer” on page 6-151
• “Tune Inlined Parameters with MATLAB Language” on page 6-158
• “Tune Parameter Structures with Simulink Real-Time Explorer” on page 6-160
• “Tune Parameter Structures with MATLAB Language” on page 6-166
• “Define and Update Inport Data” on page 6-171
• “Define and Update Inport Data with MATLAB Language” on page 6-177
• “Inport Data Mapping Limitations” on page 6-182
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183
• “Display and Filter Hierarchical Signals and Parameters (tech preview)” on page 6-188

6 Signals and Parameters

6-2

• “Troubleshoot Signals Not Accessible by Name” on page 6-192
• “Troubleshoot Parameters Not Accessible by Name” on page 6-194
• “Troubleshoot Instance-Specific Parameters Not Saved” on page 6-195
• “Troubleshoot Instrument Label Not Present” on page 6-196
• “Troubleshoot Internationalization Issues” on page 6-197
• “Internationalization Issues” on page 6-198

 Command-Line Standalone Boot Method

6-3

Signal Monitoring Basics
Signal monitoring acquires real-time signal data without time information during real-
time application execution. There is minimal additional load on the real-time tasks. Use
signal monitoring to acquire signal data without creating scopes that run on the target
computer.

In addition to signal monitoring, Simulink Real-Time enables you to monitor Stateflow®

states as test points through the Simulink Real-Time Explorer and MATLAB command-line
interfaces. You designate data or a state in a Stateflow diagram as a test point, making it
observable during execution. You can work with Stateflow states as you do with Simulink
Real-Time signals, such as monitoring or plotting Stateflow states.

When you monitor signals from referenced models, first set the test point for the signal in
the referenced model.

Note

• Simulink Real-Time Explorer works with multidimensional signals in column-major
format.

• Some signals are not observable.

You can monitor signals using Simulink Real-Time Explorer and MATLAB language. You
can monitor Stateflow states using Simulink Real-Time Explorer, MATLAB language, and
Simulink external mode.

See Also

More About
• “Troubleshoot Signals Not Accessible by Name” on page 6-192
• “Simulink Real-Time Scope Usage” on page 6-21
• “Target Scope Usage” on page 6-23
• “Host Scope Usage” on page 6-61
• “File Scope Usage” on page 6-94

6 Signals and Parameters

6-4

• “Display and Filter Hierarchical Signals and Parameters” on page 6-183

 See Also

6-5

Monitor Signals with Simulink Real-Time Explorer
This procedure uses the model xpcosc. You must have already completed the following
setup:

1 Open model xpcosc. Set property Stop time to inf. On the Real-Time tab, select
Run on Target > Stop Time and set the Stop Time to inf.

2 Connect to the target computer. On the Real-Time tab, toggle the Disconnected
indicator to Connected.

3 Build and download the real-time application to the target computer. On the Real-
Time tab, click Run on Target.

4 Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT
Explorer.

To monitor a signal:

1 In Simulink Real-Time Explorer, expand the Model Hierarchy node under the real-
time application node.

2 To view the signals in the real-time application, select the model node. On the toolbar,
click the View Signals button . The Signals workspace opens.

3 To view the value of a signal, in the Signals workspace, select the Monitor check box
for the signal. For instance, select the check boxes for Signal Generator and
Integrator1. The signal values are shown in the Monitoring Value column.

4 To start execution, click the real-time application. On the toolbar, click the Start
button .

5 To stop execution, click the real-time application. On the toolbar, click the Stop
button .

The Application Properties and Signals workspaces look like this figure.

6 Signals and Parameters

6-6

To make both workspaces visible at the same time, drag one workspace tab down until
the icon appears in the middle of the dialog box. Continue to drag the workspace until
the cursor reaches the required quadrant, and then release the mouse button.

 Monitor Signals with Simulink Real-Time Explorer

6-7

To save your Simulink Real-Time Explorer layout, click File > Save Layout. In a later
session, you can click File > Restore Layout to restore your layout.

See Also

More About
• “Create Signal Groups with Simulink Real-Time Explorer” on page 6-58
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183
• “Signal Group Monitoring Formats” on page 6-16
• “Troubleshoot Signals Not Accessible by Name” on page 6-192

6 Signals and Parameters

6-8

Monitor Signals with MATLAB Language
This procedure uses the model ex_slrt_rt_osc
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_rt_osc')))). You must have already completed the setup in “Prepare Real-
Time Application by Using MATLAB Language”.

Note

• Signal access by signal index will be removed in a future release. Access signals by
signal name instead.

• The Simulink Real-Time software lists referenced model signals with their full block
path. For example, ex_slrt_rt_osc/childmodel/gain.

1 To get a list of signals, type:

tg.ShowSignals = 'on'

Target: TargetPC1
 Connected = Yes
 Application = xpcosc
.
.
.
 Scopes = 1
 NumSignals = 7
 ShowSignals = on
 Signals =
 INDEX VALUE Type BLOCK NAME LABEL
 0 0.000000 DOUBLE Gain
 1 0.000000 DOUBLE Gain1
 2 0.000000 DOUBLE Gain2
 3 0.000000 DOUBLE Integrator
 4 0.000000 DOUBLE Integrator1
 5 0.000000 DOUBLE Signal Generator
 6 0.000000 DOUBLE Sum
.
.
.

 Monitor Signals with MATLAB Language

6-9

If your signal has a unique label, its label is displayed in the Label column. If the
label is not unique, the command returns an error.

2 To get the value of a signal, use the getsignal method. In the Command Window,
type:

getsignal(tg,'Integrator1')

ans =

 -3.8771

See Also

More About
• “Configure Target Scopes with MATLAB Language” on page 6-55
• “Troubleshoot Signals Not Accessible by Name” on page 6-192

6 Signals and Parameters

6-10

Instrument a Stateflow Subsystem
In this section...
“Configure Stateflow States as Test Points” on page 6-11
“Monitor Stateflow States with Simulink Real-Time Explorer” on page 6-13

A Simulink Real-Time model that uses Stateflow blocks can present special
circumstances. For example, if the model implements a control algorithm as a Stateflow
subsystem, the Stateflow signals are not visible to Simulink Real-Time by default.

This procedure uses the model ex_slrt_sf_car
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_sf_car')))).

Configure Stateflow States as Test Points
To make Stateflow signals visible to Simulink Real-Time, mark them as test points:

1 Open the ex_slrt_sf_car model.
2 Double-click the shift_logic chart.

 Instrument a Stateflow Subsystem

6-11

3 In the Modeling tab, click Model Explorer.
4 In the Model Explorer, expand ex_slrt_sf_car, then expand shift_logic.
5 Expand gear_state, and then select first.
6 To create a test point for the first state, in the State first pane Logging tab, select

the Test point check box.
7 Click Apply.
8 Repeat steps 8–10 for gear_state values second, third, and fourth.
9 Build and download the real-time application to the target computer. On the Real-

Time tab, click Run on Target.

6 Signals and Parameters

6-12

Monitor Stateflow States with Simulink Real-Time Explorer
1 Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT

Explorer.
2 Connect to the target computer in the Targets pane (on the toolbar).
3 In the Applications pane, expand the real-time application and the Model

Hierarchy node.
4 To view the test point, select shift_logic and click the View Signals button on

the toolbar.
5 In the Signals workspace, select the Monitor check box for gear_state.first,

gear_state.second, gear_state.third, and gear_state.fourth. The values
of the signals are shown in the Monitoring Value column.

6 To start execution, click the real-time application. On the toolbar, click the Start
button .

7 To stop execution, click the real-time application. On the toolbar, click the Stop
button .

 Instrument a Stateflow Subsystem

6-13

6 Signals and Parameters

6-14

See Also

More About
• “Monitor Stateflow States with MATLAB Language” on page 6-17
• “Animate Stateflow Charts with Simulink External Mode” on page 6-18
• “Create Signal Groups with Simulink Real-Time Explorer” on page 6-58
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183
• “Signal Group Monitoring Formats” on page 6-16
• “Troubleshoot Signals Not Accessible by Name” on page 6-192

 See Also

6-15

Signal Group Monitoring Formats
When monitoring a signal group using Simulink Real-Time Explorer, you can change the
output format of the group by selecting one of the Format options. The monitoring
formats are an extension of the options used in C sprint format character vectors.

Data Type Digits Meaning Example
F 1–7 Decimal float, with from one

to seven digits to the right
of the decimal point

Decimal 31.5415 with
format F7 is 31.5415000.

E 1–7 Scientific notation, with
from one to seven digits to
the right of the decimal
point

Decimal 31.5415 with
format E7 is 3.1541500E1.

G 1–7 The shorter of F and E, with
from one to seven digits to
the right of the decimal
point

Decimal 31.5415 with
format G7 is 31.5415000.

H 1–7 Hexadecimal integer, one to
seven hexadecimal digits
wide

Decimal 315 with format H7
is 0x000013B.

B 1–7 Binary integer, one to seven
binary digits wide

Decimal 31 with format B7
is 0011111.

See Also

More About
• “Create Signal Groups with Simulink Real-Time Explorer” on page 6-58

6 Signals and Parameters

6-16

Monitor Stateflow States with MATLAB Language
You must have already set Stateflow states as test points in model ex_slrt_sf_car
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_sf_car')))). If you have not, see “Configure Stateflow States as Test Points”
on page 6-11.

1 To get a list of signals in the Command Window, type:

tg = slrt
2 To display the signals in the real-time application, type:

tg.ShowSignals = 'on'

The latter causes the Command Window to display a list of the target object
properties for the available signals.

For Stateflow states that you have set as test points, the state appears in the BLOCK
NAME column. For example, assume that you set a test point for the first state of
gear_state in the shift_logic chart of the ex_slrt_sf_car model. The state of
interest, first, appears as follows in the list of signals in the MATLAB interface:

shift_logic:gear_state.first

shift_logic is the path to the Stateflow chart. gear_state.first is the path to
the specific state.

See Also

More About
• “Troubleshoot Signals Not Accessible by Name” on page 6-192

 Monitor Stateflow States with MATLAB Language

6-17

Animate Stateflow Charts with Simulink External Mode
The Simulink Real-Time software supports the animation of Stateflow charts in your
model to provide visual confirmation that your chart behaves as expected.

You must be familiar with the use of Stateflow animation. For more information on
Stateflow animation, see “Animate Stateflow Charts” (Stateflow).

You must have already set Stateflow states as test points in model ex_slrt_sf_car
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_sf_car')))). If you have not, see “Configure Stateflow States as Test Points”
on page 6-11.

1 Open the external mode control panel. In the Simulink Editor, in the Real-Time tab,
click Prepare > Control Panel.

2 Select Signal & Triggering.
3 In the Trigger section of the External Signal & Triggering window:

• To direct the trigger to re-arm after the trigger event completes, set Mode to
normal.

• To select the number of base rate steps for which external mode uploads data
after a trigger event, in the Duration box, enter 5.

• To direct data upload to begin immediately after the trigger event, select the Arm
when connecting to target check box.

4 Click Apply. For more information about signal and triggering options, see
“Configure Host Monitoring of Target Application Signal Data” (Simulink Coder).

5 Open Configuration Parameters. On the Real-Time tab, click Hardware Settings.
6 Select Simulink Real-Time Options > Miscellaneous options > Enable

Stateflow animation.
7 Click Apply.
8 Verify that Stateflow animation is enabled for Simulink Real-Time. In the MATLAB

Command Window, type:

get_param('ex_slrt_sf_car','xPCEnableSFAnimation')

ans =

 'on'

6 Signals and Parameters

6-18

9 Connect to the target computer. On the Real-Time tab, toggle the Disconnected
indicator to Connected.

10 Build and download the model to the target computer. On the Real-Time tab, click
Run on Target.

The simulation begins to run. You can observe the animation by opening the
Stateflow Editor for your model.

11 To stop the simulation, on the Real-Time tab, click Stop.

Note Enabling the animation of Stateflow charts also displays additional Stateflow
information. The Stateflow software requires this information to animate charts. You can
disregard this information.

See Also

More About
• “Troubleshoot Signals Not Accessible by Name” on page 6-192

 See Also

6-19

Signal Tracing Basics
Signal tracing acquires signal and time data from a real-time application. While the real-
time application is running, you can visualize the data on the target computer using a
target scope. You can also upload the data to the development computer and display it
using a host scope.

You trace signals using target and host scopes and view them using Simulink Real-Time
Explorer, Simulink external mode, MATLAB language, and a web browser interface.

Simulink Real-Time Explorer can display multidimensional signals in column-major
format.

Some signals are not observable.

See Also

More About
• “Troubleshoot Signals Not Accessible by Name” on page 6-192
• “Simulink Real-Time Scope Usage” on page 6-21
• “Target Scope Usage” on page 6-23
• “Host Scope Usage” on page 6-61
• “File Scope Usage” on page 6-94
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183

6 Signals and Parameters

6-20

Simulink Real-Time Scope Usage
• To monitor an output signal from a Constant block by connecting it to a Simulink Real-

Time Scope block, add a test point for the Constant block output signal.
• You can add a Simulink Real-Time Scope block only to the topmost model, not to a

referenced model. To log signals from referenced models, use Simulink Real-Time
Explorer scopes or Simulink Real-Time language scope objects.

• When you build and download the real-time application, the Simulink Real-Time kernel
creates a scope representing the real-time Scope block. You can change the Scope
parameters after building the real-time application or while it is running. To change
the parameters, assign the scope to a MATLAB variable using the target object method
getscope. You can use getscope to remove a scope created during the build and
download process. The Simulink Real-Time kernel recreates the scope when you
restart the real-time application.

• If the output of a Mux block is connected to the input of a Simulink Real-Time Scope
block, the signal is not observable. To observe the signal, add a unit gain block (a Gain
block with a gain of 1) between the Mux block and the Simulink Real-Time Scope
block.

• You can pass vector signals into a Simulink Real-Time Scope block. The real-time
application interprets the vector as a series of individual signals. However, you cannot
pass a matrix signal into a Scope block. Doing so results in a build error. To display a
matrix signal, pass it to a Reshape block and pass the resulting vector into the Scope
block.

• The real-time application can generate data faster than the kernel can process it.
Previous data can be overwritten, causing gaps. If gaps occur in the data, consider
increasing the value of the Decimation property of the scope.

See Also
Gain | Mux | Reshape | getscope

More About
• “Troubleshoot Signals Not Accessible by Name” on page 6-192
• “Target Scope Usage” on page 6-23
• “Host Scope Usage” on page 6-61

 Simulink Real-Time Scope Usage

6-21

• “File Scope Usage” on page 6-94
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183

6 Signals and Parameters

6-22

Target Scope Usage
• There can be no more than nine target scopes in a model, whether created by using a

real-time Scope block or using the run-time interface. Each target scope can contain
up to 10 signals.

• The combined number of target scopes and Video Display blocks in the model cannot
exceed nine.

• With one graphical target scope active on the target computer, the graphical and
numerical formats are displayed. With more than one target scope active, only the
format that the Scope mode parameter specifies is displayed.

• For a target scope, logged data (sc.Data and sc.Time) is not accessible over the
command-line interface on the development computer. Logged data is accessible only
when the scope object status (sc.Status) is set to Finished. When the scope
completes one data cycle (time to collect the number of samples), the scope engine
restarts the scope instead of setting sc.Status to Finished.

If you create a scope object, for example, sc = getscope(tg,1) for a target scope,
you cannot get the logged data by typing sc.Data. Instead, you get an error message:

Scope # 1 is of type 'Target'! Property Data

 is not accessible.

To view data on the development computer while the data is being displayed on the
target computer, define a second scope object with type host. Then synchronize the
acquisitions of the two scope objects by setting TriggerMode for the second scope to
'Scope'.

• To display the target scope image in a display window on the development computer
screen, use viewTargetScreen.

To save the target scope image to a file, right-click in the display window and then
click Save as image.

See Also
Video Display | getscope | viewTargetScreen

 Target Scope Usage

6-23

More About
• “Configure Real-Time Target Scope Blocks” on page 6-25
• “Create Target Scopes with Simulink Real-Time Explorer” on page 6-31
• “Simulink Real-Time Scope Usage” on page 6-21
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183

6 Signals and Parameters

6-24

Configure Real-Time Target Scope Blocks
Simulink Real-Time includes a specialized Scope block that you can configure to display
signal and time data on the target computer monitor. Add a Scope block to the model,
select Scope type Target, and configure the other parameters as described in the
following procedure.

Do not confuse Simulink Real-Time Scope blocks with standard Simulink Scope blocks.

This procedure uses the example model ex_slrt_rt_osc
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_rt_osc')))).

1 In the Command Window, open ex_slrt_rt_osc.
2 Double-click the block labeled Scope.

The Scope block dialog box opens. By default, the target scope dialog box is
displayed.

3 In the Scope number box, a unique number is displayed that identifies the scope.
This number is incremented each time you add a Simulink Real-Time Scope block.

This number identifies the Simulink Real-Time Scope block and the scope screen on
the development or target computers.

4 From the Scope type list, select Target if it is not already selected. The updated
dialog box is displayed.

5 To start the scope automatically when the real-time application executes, select the
Start scope when application starts check box. The target scope opens
automatically on the target computer monitor.

In Stand Alone mode, this setting is mandatory, because the development computer
is not available to issue a command to start scopes.

6 From the Scope mode list, select Numerical, Graphical redraw, or Graphical
rolling. (The Graphical sliding will be removed in a future release. It behaves
like Graphical rolling.)

If you have a scope type of Target and a scope mode of Numerical, the scope block
dialog box adds a Numerical format box. You can define the display format for the
data. If you do not complete the Numerical format box, the Simulink Real-Time
software displays the signal using the default format of %15.6f. This format is a
floating-point format without a label.

 Configure Real-Time Target Scope Blocks

6-25

7 If you select scope mode Numerical, in the Numerical format box, type a label and
associated numerical format type in which to display signals. By default, the entry
format is floating-point without a label, %15.6f. The Numerical format box takes
entries of the format:

'[LabelN] [%width.precision][type] [LabelX]'

• LabelN is the label for the signal. You can use a different label for each signal or
the same label for each signal. This argument is optional.

• width is the minimum number of characters to offset from the left of the screen
or label. This argument is optional.

• precision is the maximum number of decimal places for the signal value. This
argument is optional.

• type is the data type for the signal format. You can use one or more of the
following types.

Type Description
%e or %E Exponential format using e or E
%f Floating point
%g Signed value printed in f or e format, depending on

which is smaller
%G Signed value printed in f or E format, depending on

which is smaller

• LabelX is a second label for the signal. You can use a different label for each
signal or the same label for each signal. This argument is optional.

Enclose the contents of the Numerical format text box in single quotation marks.
For example:

'Foo %15.2f end'

For a whole integer signal value, enter 0 for the precision value. For example:

'Foo1 %15.0f end'

For a line with multiple entries, delimit each entry with a command and enclose the
entire format character vector in single quotation marks. For example:

'Foo2 %15.6f end,Foo3 %15.6f end2'

6 Signals and Parameters

6-26

You can have multiple Numerical format entries, separated by a comma. If you
insert a single entry, that entry applies to each signal (scalar expansion). If you enter
N label entries for N+Ksignals, the first N−1 entries apply to the first N−1 signals. The
Nth entry is scalar expanded for the remaining K+1 signals. If you have two entries
and one signal, the software ignores the second label entry and applies the first entry.
You can enter as many format entries as you have signals for the scope. The format
character vector has a maximum length of 100 characters, including spaces, for each
signal.

8 To display grid lines on the scope, select the Grid check box. This parameter is
applicable only for target scopes with scope modes of type Graphical redraw or
Graphical rolling.

9 In the Y-Axis limits box, enter a row vector with two elements. The first element is
the lower limit of the y-axis and the second element is the upper limit. If you enter 0
for both elements, scaling is set to auto. This parameter is applicable only for target
scopes with scope modes of type Graphical redraw or Graphical rolling.

10 In the Number of samples box, enter the number of values to be acquired in a data
package.

• If you select a Scope mode of Graphical redraw, the display redraws the
graph every Number of samples.

• If you select a Scope mode of Numerical, the block updates the output every
Number of samples.

• If you select a Trigger mode other than FreeRun, this parameter can specify the
Number of samples to be acquired before the next trigger event.

11 In the Number of pre/post samples box, enter the number of samples to save or
skip. To save N samples before a trigger event, specify the value −N. To skip N
samples after a trigger event, specify the value N. The default is 0.

12 In the Decimation box, enter a value to indicate when data is collected. The value 1
means that data is collected at each sample time. A value of 2 or greater means that
data is collected at less than every sample time.

13 From the Trigger mode list, select one of the following:

• FreeRun or Software Triggering — No extra parameters.
• Signal Triggering — enter additional parameters, as required:

• In the Trigger signal box, enter the index of a signal previously added to the
scope.

 Configure Real-Time Target Scope Blocks

6-27

This parameter does not apply if the Add signal port to connect a signal
trigger source check box is selected.

• (Alternatively) Click the Add signal port to connect a signal trigger source
check box, then connect an arbitrary trigger signal to the port Trigger signal.

• In the Trigger level box, enter a value for the signal to cross before
triggering.

• From the Trigger slope list, select one of Either, Rising, or Falling.
• Scope Triggering — enter additional parameters, as required:

• In the Trigger scope number box, enter the scope number of a Scope block.
If you use this trigger mode, add a second Scope block to your Simulink model.

• To trigger one scope on a specific sample of another scope, enter a value in
Sample to trigger on (-1 for end of acquisition). The default value, 0,
indicates that the triggered scope starts on the same sample as the triggering
scope.

The target scope dialog box looks like this figure.

6 Signals and Parameters

6-28

 Configure Real-Time Target Scope Blocks

6-29

14 Click OK.
15 Save the model as ex_slrt_target_osc

(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_target_osc')))). On the Simulation tab, from Save,
click Save As.

See Also
Scope

More About
• “Simulink Real-Time Scope Usage” on page 6-21
• “Target Scope Usage” on page 6-23
• “Trigger One Scope with Another Scope” on page 11-19

6 Signals and Parameters

6-30

Create Target Scopes with Simulink Real-Time Explorer
You can create a target scope on the target computer using Simulink Real-Time Explorer.
These scopes have the full capabilities of the Scope block in Target mode, but do not
persist past the current execution.

Note For information on using target scope blocks, see “Configure Real-Time Target
Scope Blocks” on page 6-25 and “Target Scope Usage” on page 6-23.

This procedure uses the model xpcosc. You must have already completed the following
setup:

1 Open model xpcosc. Set property Stop time to inf. On the Real-Time tab, select
Run on Target > Stop Time and set Stop Time to inf.

2 Connect to the target computer. On the Real-Time tab, toggle the Disconnected
indicator to Connected.

3 Build and download the real-time application to the target computer. On the Real-
Time tab, click Run on Target.

4 Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT
Explorer.

To configure a target scope:

1 In the Scopes pane, expand the xpcosc node.
2 To add a target scope, select Target Scopes and then click the Add Scope

button on the toolbar.

The new scope appears under node Target Scopes, for example Scope 1.
3 Select Scope 1 and then click the Properties button on the toolbar.
4 In the Scope Properties workspace, click Signals. You add signals from the

Applications Signals workspace.
5 In the Applications pane, expand the real-time application node and then node

Model Hierarchy.
6 Select the model node and then click the View Signals button on the toolbar.

The Signals workspace opens, showing a table of signals with properties and actions.

 Create Target Scopes with Simulink Real-Time Explorer

6-31

7 In the Signals workspace, to add signal Signal Generator to Scope1, drag signal
Signal Generator to the Scope1 properties workspace.

8 Add signal Integrator1 to Scope 1 in the same way.

The dialog box looks like this figure.

6 Signals and Parameters

6-32

9 To start execution, click the real-time application and then click the Start
button on the toolbar.

 Create Target Scopes with Simulink Real-Time Explorer

6-33

The application starts running. No output appears on the target computer monitor.
10 To start Scope 1, click Scope 1 in the Scopes pane and then click the Start Scope

button on the toolbar.

Output for signals Signal Generator and Integrator1 appears on the target
computer monitor.

11 To stop Scope 1, click Scope 1 in the Scopes pane and then click the Stop Scope
button on the toolbar.

The signals shown on the target computer stop updating while the real-time
application continues running. The target computer monitor displays a message like
this message:

Scope: 1, set to state 'interrupted'
12 To stop execution, click the real-time application and then click the Stop

button on the toolbar.

The real-time application on the target computer stops running, and the target
computer displays messages like these messages:

minimal TET: 0.0000006 at time 0.001250

maximal TET: 0.0000013 at time 75.405500

The target computer screen looks like this figure.

6 Signals and Parameters

6-34

You can create a target scope from the scope types list by clicking Add Scope next to
scope type Target Scopes. You can add or remove signals from a target scope while the
scope is either stopped or running.

To make both workspaces visible at the same time, drag one workspace tab down until
the icon appears in the middle of the dialog box. Continue to drag the workspace until
the cursor reaches the required quadrant, and then release the mouse button.

 Create Target Scopes with Simulink Real-Time Explorer

6-35

To save your Simulink Real-Time Explorer layout, click File > Save Layout. In a later
session, you can click File > Restore Layout to restore your layout.

See Also
viewTargetScreen

More About
• “Create Signal Groups with Simulink Real-Time Explorer” on page 6-58
• “Configure Target Scopes with Simulink Real-Time Explorer” on page 6-51
• “Configure Scope Sampling with Simulink Real-Time Explorer” on page 6-37
• “Trigger Scopes with Simulink Real-Time Explorer” on page 6-41
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183

6 Signals and Parameters

6-36

Configure Scope Sampling with Simulink Real-Time
Explorer

You can customize sampling for Simulink Real-Time scopes to facilitate data access to the
running model. You can configure sampling whether you added a Scope block to the
model or added the scope at run time.

This procedure uses the model xpcosc. You must have already completed the procedure
in “Create Target Scopes with Simulink Real-Time Explorer” on page 6-31. Target
execution and scopes must be stopped.

1 Select Scope 1 and open the Properties pane (on the Scopes toolbar).
2 In the Scope 1 properties pane, click Sampling.
3 In the Number of Samples box, enter the number of values to be acquired in a data

package, here 250.

If you select a Display mode of Graphical redraw, the display redraws the graph
every Number of Samples.

If you select a Display mode of Numerical, the block updates the output every
Number of Samples.

If you select a Trigger Mode other than FreeRun, this parameter can specify the
number of samples to be acquired before the next trigger event.

4 In the Decimation box, enter 10 to indicate that data must be collected at every
10th sample time. The default is 1, to collect data at every sample time.

5 In the Number of pre/post samples box, enter the number of samples to save or
skip. To save N samples before a trigger event, specify the value −N. To skip N
samples after a trigger event, specify the value N. The default is 0.

The dialog box looks like this figure.

 Configure Scope Sampling with Simulink Real-Time Explorer

6-37

6 Start execution (on the Applications toolbar).
7 Start Scope 1 (on the toolbar).

Output for signals Signal Generator and Integrator1 appears on the target
computer monitor.

6 Signals and Parameters

6-38

8 Stop Scope 1 (on the toolbar).
9 Stop execution (on the Applications toolbar).

 Configure Scope Sampling with Simulink Real-Time Explorer

6-39

See Also

More About
• “Trigger Scopes with Simulink Real-Time Explorer” on page 6-41

6 Signals and Parameters

6-40

Trigger Scopes with Simulink Real-Time Explorer
To facilitate your interaction with the running model, you can configure scope triggering
for Simulink Real-Time scopes. You can configure triggering whether you created the
scope by adding a Scope block to the model or by adding the scope at run time.

The following procedures use the model xpcosc. You must have already completed the
procedure in “Create Target Scopes with Simulink Real-Time Explorer” on page 6-31.
Target execution and scopes must be stopped.

Freerun Triggering
In Trigger Mode Freerun, the scope triggers automatically when it is started. It
displays data until it is stopped. By default, Trigger Mode is set to Freerun.

1 Start execution (on the Applications toolbar).
2 Select Scope 1 and open the Properties pane (on the Scopes toolbar).
3 In the Scope 1 pane, click Triggering.
4 Select Trigger Mode Freerun.
5 Start and stop Scope 1 (and on the toolbar).

Signal data is displayed on the target computer monitor when the scope starts and
stops when the scope stops.

6 Stop execution (on the Applications toolbar).

Software Triggering
In Trigger Mode Software, the scope triggers when you select Scope 1 and then click
the Trigger button on the toolbar.

1 Start execution (on the Applications toolbar).
2 Select Trigger Mode Software.
3 Start Scope 1 (on the toolbar).

The Trigger button is enabled on the toolbar.

 Trigger Scopes with Simulink Real-Time Explorer

6-41

4 Click the Trigger button on the Scopes toolbar.

The current signal data is displayed on the target computer monitor when you click
the button.

5 Stop Scope 1 (on the toolbar).

The dialog box looks like this figure.

The target monitor looks like this figure.

6 Signals and Parameters

6-42

6 Stop execution (on the Applications toolbar).

Signal Triggering
In Trigger Mode Signal, the scope triggers when a signal rises or falls through a
specified level.

 Trigger Scopes with Simulink Real-Time Explorer

6-43

1 Start execution (on the Applications toolbar).
2 Select Scope 1 and open the Properties pane (on the Scopes toolbar).
3 In the Scope 1 pane, click Triggering.
4 Select Trigger Mode Signal.

Settings Trigger Signal, Trigger Slope, and Trigger Level appear.
5 Type the number displayed on the target computer screen for Signal Generator

(here, 5) in the Trigger Signal text box.
6 Set Trigger Slope to Rising.
7 Leave Trigger Level as 0, indicating that the signal crosses 0 before Scope 1

triggers.

6 Signals and Parameters

6-44

8 Start Scope 1 (on the toolbar).

Signal data is displayed on the target computer monitor, with the rising pulse of
Signal Generator just beyond the left side.

 Trigger Scopes with Simulink Real-Time Explorer

6-45

9 Stop Scope 1 (on the toolbar).
10 Stop execution (on the Applications toolbar).

6 Signals and Parameters

6-46

Scope Triggering
In Trigger Mode Scope, the scope triggers when another scope triggers. In this
example, Scope 2 triggers when signal-triggered Scope 1 triggers.

1 Start execution (on the Applications toolbar).
2 Add scope Scope 2 (on the Scopes toolbar).
3 Open the Signals pane (on the Applications toolbar).
4 Add signal Integrator to Scope 2 in the Signals pane.
5 In the Scope 2 pane, click Triggering.
6 Select Trigger Mode Scope.

Settings Trigger scope and Trigger scope sample appear.
7 Set Trigger scope to 1. Press Enter. Scope 2 then triggers when Scope 1 triggers.
8 Leave Trigger scope sample set to 0. Scope 2 triggers on the same sample as

Scope 1.

 Trigger Scopes with Simulink Real-Time Explorer

6-47

6 Signals and Parameters

6-48

9 Explicitly start both Scope 1 and Scope 2 (on the toolbar).

Scope 1 and Scope 2 display signal data on the target computer monitor.

10 Explicitly stop both Scope 1 and Scope 2 (on the toolbar).
11 Stop execution (on the Applications toolbar).

 Trigger Scopes with Simulink Real-Time Explorer

6-49

See Also

More About
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183

6 Signals and Parameters

6-50

Configure Target Scopes with Simulink Real-Time
Explorer

To facilitate your view of the signal data, you can configure the target scope display. You
can configure the display whether you added a Scope block to the model or added the
scope at run time.

This procedure uses the model xpcosc. You must have already completed the procedure
in “Create Target Scopes with Simulink Real-Time Explorer” on page 6-31. Target
execution and scopes must be stopped.

1 Start execution (on the Applications toolbar).
2 Select Scope 1 and open the Properties pane (on the Scopes toolbar).
3 In the Scope 1 pane, click Display.
4 Select Display mode Redraw and then click in the Y-Limits box.

This value is the default. It causes the scope display to redraw when it has acquired
as many samples as specified in Number of Samples.

5 Start Scope 1 (on the toolbar).

Signal data is displayed on the target computer monitor, appearing to move to the
left.

6 Enter [0,10] in the Y-Limits box and then press Enter. The default setting is
[0,0], which automatically scales the output according to the signal values.

The display changes to show only values at and above the zero line.
7 Clear the Grid (On/Off) check box. By default, the box is selected.

 Configure Target Scopes with Simulink Real-Time Explorer

6-51

The target computer monitor looks like this figure.

6 Signals and Parameters

6-52

8 Select Display mode Numerical and then click the Y-Limits box.

The grid and axes disappear. The target computer monitor displays the signals, color
coded, in the default format of %15.6f (a floating-point format without a label).

9 Select Display mode Rolling and then click in the Y-Limits box.

The display changes to a display that continuously moves a window along the signal
log. New data enters the display from the right and then moves toward the left.

 Configure Target Scopes with Simulink Real-Time Explorer

6-53

10 Stop Scope 1 (on the toolbar).
11 Stop execution (on the Applications toolbar).

See Also
viewTargetScreen

6 Signals and Parameters

6-54

Configure Target Scopes with MATLAB Language
Creating a scope object allows you to select and view signals using Simulink Real-Time
functions instead of the Simulink Real-Time user interface.

This procedure uses the Simulink model xpcosc. To do this procedure, you must have
already built the real-time application for xpcosc and downloaded it to the default target
computer. It describes how to trace signals with target scopes.

1 Start running your real-time application. Type:

tg = slrt;
start(tg)

2 To get a list of signals, type:

tg.ShowSignals = 'on'

The Command Window displays a list of the target object properties for the available
signals. For example, the signals for the model xpcosc are:

Target: TargetPC1
 Connected = Yes
 Application = xpcosc
.
.
.
 Scopes = 1
 NumSignals = 7
 ShowSignals = on
 Signals =
 INDEX VALUE Type BLOCK NAME LABEL
 0 0.000000 DOUBLE Gain
 1 0.000000 DOUBLE Gain1
 2 0.000000 DOUBLE Gain2
 3 0.000000 DOUBLE Integrator
 4 0.000000 DOUBLE Integrator1
 5 0.000000 DOUBLE Signal Generator
 6 0.000000 DOUBLE Sum
.
.
.

3 Create a scope to be displayed on the target computer. For example, to create a
scope with an identifier of 1 and a scope object name of sc1, type:

 Configure Target Scopes with MATLAB Language

6-55

sc1 = addscope(tg, 'target', 1)

Simulink Real-Time Scope
 Application = xpcosc
 ScopeId = 1
 Status = Interrupted
 Type = Target
 NumSamples = 250
 NumPrePostSamples = 0
 Decimation = 1
 TriggerMode = FreeRun
 TriggerSignal = -1
 TriggerLevel = 0.000000
 TriggerSlope = Either
 TriggerScope = 1
 TriggerSample = 0
 DisplayMode = Redraw (Graphical)
 YLimit = Auto
 Grid = on
 Signals = no Signals defined

4 Add signals to the scope object. For example, to add Integrator1 and Signal
Generator, type:

addsignal(sc1,[4,5])

Simulink Real-Time Scope
 Application = xpcosc
 ScopeId = 1
 Status = Interrupted
 Type = Target
.
.
.
 Grid = on
 Signals = 4 : Integrator1
 5 : Signal Generator

The target computer displays the following messages:

Scope: 1, signal 4 added

Scope: 1, signal 5 added

After you add signals to a scope object, the signal values are not shown on the target
display until you start the scope.

6 Signals and Parameters

6-56

5 Start the scope. For example, to start the scope sc1, type:

start(sc1)

The target display plots the signals after collecting each data package. During this
time, you can observe the behavior of the signals while the scope is running.

6 Stop the scope. Type:

stop(sc1)

The signals shown on the target computer stop updating while the real-time
application continues running. The target computer displays the following message:

Scope: 1, set to state 'interrupted'
7 Stop the real-time application. In the Command Window, type:

stop(tg)

See Also

More About
• “Monitor Signals with MATLAB Language” on page 6-9

 See Also

6-57

Create Signal Groups with Simulink Real-Time Explorer
When testing a complex model with many signals, you frequently must select signals for
tracing or monitoring from multiple parts and levels of the model hierarchy. You can make
this task easier by using Simulink Real-Time Explorer to create a signal group and save it
to disk.

This procedure uses the model xpcosc. You must have already completed the following
setup:

1 Open model xpcosc.
2 Connect to the target computer. On the Real-Time tab, toggle the Disconnected

indicator to Connected.
3 Build and download the real-time application to the target computer. On the Real-

Time tab, click Run on Target.
4 Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT

Explorer.

To create a signal group:

1 In the Applications pane, expand the real-time application node and right-click node
Groupings.

2 Click New Signal Group.

The Add New Signal Group Item dialog box appears.
3 In the Add New Signal Group Item dialog box, enter a name in the Name text box,

for example signalgroup1.sig. In the Location text box, enter a folder for the group
file.

4 Click OK.

A new signal group appears, along with its Signal Group workspace.
5 In the Applications pane, expand the real-time application node and then expand

node Model Hierarchy.
6 Select the model node and then click the View Signals button on the toolbar.

The Signals workspace opens, showing a table of signals with properties and actions.
7 In the Signals workspace, to add signal Signal Generator to signalgroup1.sig,

drag signal Signal Generator to the signalgroup1.sig properties workspace.

6 Signals and Parameters

6-58

8 Add signal Integrator1 to signalgroup1.sig in the same way.
9

Press Enter, and then click the Save button on the toolbar.

When you are monitoring a signal group, you can change the output format of the
group by selecting one of the options in the Format column. See“Signal Group
Monitoring Formats” on page 6-16.

 Create Signal Groups with Simulink Real-Time Explorer

6-59

Signals are defined within a particular real-time application. To open a signal group from
the File > Open > Group menu, you must first select an application.

To remove signals from the signal group, select the signal items in the group list and click
Delete Signals.

To remove the signal group, navigate to the signal group under Groupings > Signals,
right-click the signal group, and click Remove.

To make both workspaces visible at the same time, drag one workspace tab down until
the icon appears in the middle of the dialog box. Continue to drag the workspace until
the cursor reaches the required quadrant, and then release the mouse button.

To save your Simulink Real-Time Explorer layout, click File > Save Layout. In a later
session, you can click File > Restore Layout to restore your layout.

See Also

More About
• “Monitor Signals with Simulink Real-Time Explorer” on page 6-6
• “Create Target Scopes with Simulink Real-Time Explorer” on page 6-31
• “Create Host Scopes with Simulink Real-Time Explorer” on page 6-66
• “Create File Scopes with Simulink Real-Time Explorer” on page 6-102
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183

6 Signals and Parameters

6-60

Host Scope Usage
• Simulink Real-Time supports as many host scopes as the target computer resources

can support. Each host scope can contain as many signals as the target computer
resources can support.

• To clarify your model functionality, consider adding signal labels. If you define signal
labels, the host scope displays the labels, highlighted with pointed brackets, instead of
the signal names. If you do not define signal labels, the host scope displays the short
name of the signal.

• Use host scopes to log signal data triggered by an event while your real-time
application is running. The host scope acquires the first N samples into a buffer. You
can retrieve this buffer into the scope object property sc.Data. The scope then stops.
Restart the scope manually.

The number of samples N to log after triggering an event is equal to the value that you
entered in the Number of samples parameter.

Select the type of trigger event in the Scope block dialog box by setting Trigger
Mode to Signal Triggering, Software Triggering, or Scope Triggering.

• The target computer transfers data to the development computer for display in the
host scope viewer. Because of this latency, the host scope display lags a target scope
display during real-time application execution.

See Also

More About
• “Configure Real-Time Host Scope Blocks” on page 6-62
• “Create Host Scopes with Simulink Real-Time Explorer” on page 6-66
• “Simulink Real-Time Scope Usage” on page 6-21
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183

 Host Scope Usage

6-61

Configure Real-Time Host Scope Blocks
Simulink Real-Time includes a specialized real-time Scope block that you can configure to
display signal and time data on the development computer monitor. Add a Scope block to
the model, select Scope type Host, and configure the other parameters as described in
the following procedure.

• Do not confuse Simulink Real-Time Scope blocks with standard Simulink Scope blocks.
• To clarify your model functionality, consider adding signal labels. If you define signal

labels, the host scope displays the labels, highlighted with pointed brackets, instead of
the signal names. If you do not define signal labels, the host scope displays the short
name of the signal.

This procedure uses the example model ex_slrt_rt_osc
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_rt_osc')))).

1 In the Command Window, open ex_slrt_rt_osc.
2 Double-click the block labeled Scope.

The Scope block dialog box opens. By default, the target scope dialog box is
displayed.

3 In the Scope number box, a unique number is displayed that identifies the scope.
This number is incremented each time that you add a Simulink Real-Time scope.

This number identifies the Simulink Real-Time Scope block and the scope screen on
the development or target computers.

4 From the Scope type list, select Host. The updated dialog box is displayed.
5 To start the scope automatically when the real-time application executes, select the

Start scope when application starts check box. You can then open a host scope
viewer from Simulink Real-Time Explorer.

In Stand Alone mode, this setting is mandatory because the development computer
is not available to issue a command to start scopes.

6 In the Number of samples box, enter the number of values to be acquired in a data
package.

7 In the Number of pre/post samples box, enter the number of samples to save or
skip. To save N samples before a trigger event, specify the value −N. To skip N
samples after a trigger event, specify the value N. The default is 0.

6 Signals and Parameters

6-62

8 In the Decimation box, enter a value to indicate when data is collected. The value 1
means that data is collected at each sample time. A value of 2 or greater means that
data is collected at less than every sample time.

9 From the Trigger mode list, select one of the following:

• FreeRun or Software Triggering — No extra parameters.
• Signal Triggering — enter additional parameters, as required:

• In the Trigger signal box, enter the index of a signal previously added to the
scope.

This parameter does not apply if the Add signal port to connect a signal
trigger source check box is selected.

• (Alternatively) Click the Add signal port to connect a signal trigger source
check box, then connect an arbitrary trigger signal to the port Trigger signal.

• In the Trigger level box, enter a value for the signal to cross before
triggering.

• From the Trigger slope list, select one of Either, Rising, or Falling.
• Scope Triggering — enter additional parameters, as required:

• In the Trigger scope number box, enter the scope number of a Scope block.
If you use this trigger mode, add a second Scope block to your Simulink model.

• To trigger one scope on a specific sample of another scope, enter a value in
Sample to trigger on (-1 for end of acquisition). The default value, 0,
indicates that the triggered scope starts on the same sample as the triggering
scope.

The host scope dialog box looks like this figure.

 Configure Real-Time Host Scope Blocks

6-63

10 Click OK.
11 Save the model as ex_slrt_host_osc

(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_host_osc')))). On the Simulation tab, from Save,
click Save As.

6 Signals and Parameters

6-64

See Also
Scope

More About
• “Simulink Real-Time Scope Usage” on page 6-21
• “Host Scope Usage” on page 6-61
• “Create Host Scopes with Simulink Real-Time Explorer” on page 6-66
• “Trigger One Scope with Another Scope” on page 11-19

 See Also

6-65

Create Host Scopes with Simulink Real-Time Explorer
You can create a host scope on the target computer with Simulink Real-Time Explorer.
These scopes have the full capabilities of the Scope block in Host mode, but do not
persist past the current execution.

For information on using host scope blocks, see “Configure Real-Time Host Scope Blocks”
on page 6-62 and “Host Scope Usage” on page 6-61.

This procedure uses the model ex_slrt_sf_car
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_sf_car')))).

Set Up Model
Before creating a host scope, perform these steps:

1 Open model ex_slrt_sf_car. Set property Stop time to inf. On the Real-Time
tab, select Run on Target > Stop Time and set Stop Time to inf.

2 Connect to the target computer. On the Real-Time tab, toggle the Disconnected
indicator to Connected.

3 Build and download the real-time application to the target computer. On the Real-
Time tab, click Run on Target.

4 Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT
Explorer.

Configure Host Scope
1 In the Scopes pane, expand the ex_slrt_sf_car node.
2 To add a host scope, select Host Scopes, and then click the Add Scope button on

the toolbar.
3 Expand Scope 1, and then click the Properties button on the toolbar.

To display the host scope signals, in the Scope Properties pane, click Signals.
4 In the Applications pane, expand the real-time application node, and then the node

Model Hierarchy.

6 Signals and Parameters

6-66

5 Double-click the ex_slrt_sf_car > transmission > Torque Converter node.

The Torque Converter signal list opens.
6 To add signal turbine to Scope1, drag signal turbine from the Torque Converter

signal list to the Scope1 properties workspace.

To make the Scope1 properties visible below the Torque Converter signal list, drag
the Torque Converter tab down until the icon appears.

7 Double-click transmission ratio and add signal Product to Scope 1 in the same
way as described in step 6.

 Create Host Scopes with Simulink Real-Time Explorer

6-67

View Host Scope
1 Select Scope 1, and then click the View Scope button on the toolbar.

The host scope viewer opens as a separate tab. The signals that you add to the scope
appear at the top right of the viewer. The labels appear in pointed brackets because
these signals are labeled signals.

6 Signals and Parameters

6-68

2 To start Scope 1, click Scope 1 in the Scopes pane, and then click the Start Scope
button on the toolbar.

3 To start execution, click the real-time application, and then click the Start
button on the toolbar.

The real-time application starts running. The host scope on the target computer
transfers data to the host scope on the development computer.

 Create Host Scopes with Simulink Real-Time Explorer

6-69

4 To stop Scope 1, click Scope 1 in the Scopes pane, and then click the Stop Scope
button on the toolbar.

5 To stop execution, click the real-time application, and then click the Stop
button on the toolbar.

See Also
Scope

More About
• “Host Scope Usage” on page 6-61
• “Configure Real-Time Host Scope Blocks” on page 6-62
• “Configure the Host Scope Viewer” on page 6-71
• “Create Signal Groups with Simulink Real-Time Explorer” on page 6-58
• “Configure Scope Sampling with Simulink Real-Time Explorer” on page 6-37
• “Trigger Scopes with Simulink Real-Time Explorer” on page 6-41
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183

6 Signals and Parameters

6-70

Configure the Host Scope Viewer
You can customize the viewer for each host scope to facilitate your interaction with the
running model.

This procedure uses the model xpcosc. You must have already completed the procedure
in “Create Host Scopes with Simulink Real-Time Explorer” on page 6-66. Target execution
and scopes must be stopped.

1 In the Signals workspace, to add signal Integrator to host scope Scope1, drag
signal Integrator to the Host Scope Viewer display.

2 Start execution (on the Applications toolbar).
3 To start Scope 1, click the Start button on the Host Scope Viewer toolbar.
4 To trigger Scope 1, click the Trigger button on the Host Scope Viewer toolbar.

To trigger a capture interactively using the Trigger button , first set the scope
Trigger Mode to Software or Scope.

5 In the Simulink Real-Time Host Scope Viewer, right-click anywhere in the axis area of
the viewer and then click Edit.

The Host Scope Viewer display parameter buttons become enabled on the toolbar.
6 Adjust the Host Scope Viewer display using:

• Auto Scale — To scale the display to accommodate the top and bottom of the
Y-axis.

•
Axes Scroll — To move the content up and down and right and left relative to
the axes. The axes scroll as required.

• Axes Zoom — To stretch and compress the X-axis and Y-axis.
•

Zoom In — To zoom in on the current center of the display.
•

Zoom Out — To zoom out from the current center of the display.
• Zoom Box — To select an area of interest in the display. When you release the

mouse button, the display zooms in upon the selected area.

 Configure the Host Scope Viewer

6-71

•
Data Cursor — To display data values using a set of cross-hairs in the display.

Data is displayed as the pair x-value,y-value, indicating the value at that point
on the display. You can drag the center of the cross hairs and observe the value at
each point.

•
Legends — To toggle display of the signal names.

•
Y-Axes Scale Display — To show the scale of the Y-axis.

7 To stop Scope 1, click the Stop button on the Host Scope Viewer toolbar.
8 Stop execution (on the Applications toolbar).

See Also

More About
• “Trigger Scopes with Simulink Real-Time Explorer” on page 6-41

6 Signals and Parameters

6-72

Trace Signals with Simulink External Mode
You can use Simulink external mode to establish a communication channel between your
Simulink block diagram and your real-time application. The block diagram becomes a
user interface to your real-time application. Simulink scopes can display signal data from
the real-time application, including from models referenced inside a top model. You can
control which signals to upload through the External Signal & Triggering dialog box (see
“Select Signals to Upload” (Simulink Coder) and “Control External Mode Simulation
Through External Mode Control Panel” (Simulink Coder)).

Note Do not use Simulink external mode while Simulink Real-Time Explorer is running.
Use only one interface or the other.

This procedure uses the model xpcosc. xpcosc contains a Simulink Scope block.

1 Open model xpcosc.
2 Open the external mode control panel. In the Simulink Editor, on the Real-Time tab,

click Prepare > Control Panel.
3 In the external mode control panel, click the Signal & Triggering button.
4 In the External Signal & Triggering dialog box, set the Source parameter to manual.
5 Set the Mode parameter to normal. In this mode, the scope acquires data

continuously.
6 Select the Arm when connecting to target check box.
7 In the Delay box, enter 0.
8 In the Duration box, enter the number of samples for which external mode is to log

data, for example 1000.

The External Signal & Triggering dialog box looks like this figure.

 Trace Signals with Simulink External Mode

6-73

9 Click Apply, and then Close.
10 In the External Mode Control Panel dialog box, click OK.
11 In the Simulink toolbar, increase the simulation stop time to, for example, 50.
12 Save the model as ex_slrt_ext_osc. On the Simulation tab, from Save, click

Save As.
13 If a scope window is not displayed for the Scope block, double-click the Scope block.
14 Connect to the target computer. On the Real-Time tab, toggle the Disconnected

indicator to Connected.
15 Build and download the real-time application to the target computer. On the Real-

Time tab, click Run on Target.

6 Signals and Parameters

6-74

The real-time application begins running on the target computer. The Scope window
displays plotted data.

16 To stop the simulation, on the Real-Time tab click Stop.

See Also

 See Also

6-75

Inspect Simulink® Real-Time™ Data with Simulation
Data Inspector

This example shows how to use Simulation Data Inspector (SDI) to log signal and task
execution time (TET) data from the real-time application. You can select signals for
display from models referenced at arbitrary levels within a model hierarchy.

• Simulation Data Inspector (SDI) and the third-party calibration tools (Vector CANape®
and ETAS® Inca) are mutually exclusive. If you use SDI to view signal data, you
cannot use the calibration tools. If you use the calibration tools, you cannot use SDI to
view signal data.

• The real-time application sometimes generates data faster than the kernel can
transmit it to the development computer, causing gaps in the output. If gaps occur,
consider selecting buffered logging. You can also reduce the number of signals being
inspected or increase the sample time.

• Simulink® Real-Time™ records signals inside enabled subsystems even when they are
not running. In while and for iterator subsystems, Simulink® Real-Time™ records
only the last data point.

This example uses the model xpcosc (open_system(fullfile(matlabroot,
'toolbox', 'rtw', 'targets', 'xpc', 'xpcdemos', 'xpcosc'))).

In this example, you control the model from Simulink® Real-Time™ Explorer. You can also
access Simulation Data Inspector by using external mode.

Setup the Simulation Data Inspector

Make sure that you have started the target computer and established communication
between the development and target computers.

1 Open model xpcosc.
2 Increase the simulation stop time to, for example, 10 seconds. On the Real-Time tab,

pull down Run on Target and type the value in the Stop Time box.
3 To log signals with SDI, in the model, select and right-click the signals Signal

Generator and Integrator1. Select Log Selected Signals. A faint Simulation
Data Inspector icon appears next to each signal.

4 To log task execution time (TET), open the Configuration Parameters dialog box. In
the Simulink Real-Time Options tab, select Monitor Task Execution Time.

6 Signals and Parameters

6-76

5 Build the model and download it to the target computer. On the Real-Time tab, click
Run on Target.

Inspect Signal Data

1 Open Simulink Real-Time Explorer. On the Real-Time tab, pull down the Prepare
section anc click SLRT Explorer.

2 In Simulink Real-Time Explorer, start the real-time application. The Simulation Data
Inspector button glows in Simulink Editor, indicating that Simulation Data Inspector
has data available for viewing.

3 Click the Simulation Data Inspector button.
4 In the Simulation Data Inspector, select the signals Integrator1:1 and

SignalGenerator:1. The Simulation Data Inspector displays plotted signal data.

 Inspect Simulink® Real-Time™ Data with Simulation Data Inspector

6-77

5. Stop the real-time application. On the Real-Time tab, click Stop.

6. After the simulation, use the Simulation Data Inspector to explore the data. For
example, to view the simulation between seconds 0.02 and 0.04, in Simulation Data
Inspector, click the Zoom in Time button. Drag the cursor over the range from 0.02 to
0.04.

6 Signals and Parameters

6-78

Inspect TET Data

1 To view the TET data, clear Integrator1:1 and SignalGenerator:1.
2 Select TET.BaseRate.minTET, TET.BaseRate.maxTET, and TET.BaseRate.TET.

 Inspect Simulink® Real-Time™ Data with Simulation Data Inspector

6-79

3. To save the Simulation Data Inspector session as a .mldatx file, click Save.

See Also
SimulinkRealTime.utils.TETMonitor.open

6 Signals and Parameters

6-80

More About
• “Trace or Log Data with the Simulation Data Inspector” on page 6-86
• Simulation Data Inspector

 See Also

6-81

Stream Signal Data from Target Computer to Simulation
Data Inspector

This example shows how to create a signal list for a Simulink Real-Time model by using
the streaming signals API. After you build the real-time application from the model and
run the application on the target computer, you can stream signal data to the Simulation
Data Inspector from dynamically selected signals.

Create a Signal List Object for Blocks

Open the model, identify the programmatic names of blocks in the model, and create a
signal list object. For more information, see SimulinkRealTime.SignalList.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcosc'));
find_system('xpcosc')
mySignals=SimulinkRealTime.SignalList()

ans =

 11×1 cell array

 {'xpcosc' }
 {'xpcosc/Gain' }
 {'xpcosc/Gain1' }
 {'xpcosc/Gain2' }
 {'xpcosc/Integrator' }
 {'xpcosc/Integrator1' }
 {'xpcosc/Mux' }
 {'xpcosc/Scope' }
 {'xpcosc/Signal↵Generator'}
 {'xpcosc/Sum' }
 {'xpcosc/Outport' }

mySignals =

 SignalList with no properties.

6 Signals and Parameters

6-82

Add Signals to Signal List Object

To add signals by name to the signal list object, get parameter information for the signals
and use the parameter information in the add command. Adding signals by name makes it
easier to find signals in the Simulation Data Inspector when viewing the signal data.

p = get_param('xpcosc/Integrator','PortHandles');
l = get_param(p.Outport,'Line');
set_param(l,'Name','Integ_out');
add(mySignals,'Integ_out')
p = get_param('xpcosc/Integrator1','PortHandles');
l = get_param(p.Outport,'Line');
set_param(l,'Name','Integ1_out');
add(mySignals,'Integ1_out')

You also can add signals to the signal list object by block path and port index. To add the
xpcosc model Integrator block input to the signal list by block path and port index,
the command is:

add(mySignals,'xpcosc/Integrator',1);

View Signals in Signal List Object

To view signals in the signal list object, use the view command.

 Stream Signal Data from Target Computer to Simulation Data Inspector

6-83

view(mySignals)

Integ_out
Integ1_out

Build the Model and Run the Application

Build the model and download the real-time application to the target computer. After
building the real-time application, you can close the model.

The model does not need to be open to stream signal data from the real-time application.

evalc('rtwbuild(''xpcosc'')');
tg = slrt('TargetPC1');
load(tg,'xpcosc');
bdclose('all');

Set the stop time and start the real-time application. To generate signal data, run the
application for 20 seconds.

tg.StopTime=Inf;
start(tg);
pause(20);

Stream Signal data to Simulation Data Inspector

To select signals to stream, use the setStreamingSignals command. This signal
selection with the signal list object is dynamic because the selection occurs after you
build and download the real-time application.

After you select signals to stream, display the signals in the Simulation Data Inspector
(SDI). For more information, see setStreamingSignals.

setStreamingSignals(tg,mySignals);
Simulink.sdi.view;

To stop streaming signals, use the command:

setStreamingSignals(tg,[]);

6 Signals and Parameters

6-84

stop(tg);

See Also
SimulinkRealTime.utils.TETMonitor.open

More About
• “Trace or Log Data with the Simulation Data Inspector” on page 6-86
• Simulation Data Inspector

 See Also

6-85

Trace or Log Data with the Simulation Data Inspector
With the Simulation Data Inspector and Simulink Real-Time, you can trace signal data
with data logging in immediate mode or log signal data with data logging in buffered
mode. In immediate mode, you view the output in real time as the application produces it.
The application can produce more data than the target computer can transmit in real time
to the development computer. Data accumulates in the network buffer, and, if the buffer
fills up, the kernel drops data points.

To avoid dropped data points caused by network buffer overruns, you can use buffered
logging mode. In buffered mode, the kernel stores data for the buffered signals in a file on
the target computer. At the end of execution, it transmits it to the development computer.
You can then view the most important signals immediately and view the buffered signals
afterward.

Buffered logging mode supports decimation and conditional block execution semantics.
Some examples are logging buffered data by enabling data logging for a signal inside a
for-iterator, function-call, or enabled/triggered subsystem. For more information about the
Simulation Data Inspector, see Simulation Data Inspector.

Set Up Model
1 Open xpcosc.
2 Right-click the Mux output signal and select Log Selected Signals.
3 Right-click the Sum output signal and select Log Selected Signals.
4 Right-click the Sum output badge () and select Properties.

Select Logging Mode to Buffered.

6 Signals and Parameters

6-86

Set Up the Simulation Data Inspector
1

Open the Simulation Data Inspector ().
2

Click the Layout button ().
3 Select two horizontal displays.

View Simulation Data
1 Build and download xpcosc.
2 Start real-time execution.
3

When the Simulation Data Inspector button glows , click the top display and
select the Sum output signal.

Click in the bottom display and select the Mux output signals.

 Trace or Log Data with the Simulation Data Inspector

6-87

4 Stop real-time execution.

When the Sum output appears, click Fit to View ().

6 Signals and Parameters

6-88

5 To zoom in on a time segment of interest, for example 10.0–10.1 s, click Zoom in
Time () and use the mouse and mouse wheel.

 Trace or Log Data with the Simulation Data Inspector

6-89

6 To save the Simulation Data Inspector session as a .mldatx file, click Save.

See Also

More About
• “Inspect Simulink® Real-Time™ Data with Simulation Data Inspector” on page 6-76
• Simulation Data Inspector

6 Signals and Parameters

6-90

External Mode Usage
• When setting up signal triggering (Source set to signal), explicitly specify the element

number of the signal in the Trigger signal:Element box. If the signal is a scalar,
enter a value of 1. If the signal is a wide signal, enter a value from 1 to 10. When
uploading Simulink Real-Time signals to Simulink scopes, do not enter Last or Any in
this box.

• The Direction:Holdoff value does not affect the Simulink Real-Time signal uploading
feature.

 External Mode Usage

6-91

Signal Logging Basics
Signal logging acquires signal data during a real-time run and stores it on the target
computer. After you stop the real-time application, you transfer the data from target
computer to development computer for analysis. You can plot and analyze the data, and
later save it to a disk on the development computer.

Simulink Real-Time signal logging samples at the base sample time. If you have a model
with multiple sample rates, add Simulink Real-Time scopes to the model to sample signals
at the required sample rates.

• The Simulink Real-Time software does not support logging data with decimation.
• Simulink Real-Time Explorer works with multidimensional signals in column-major

format.
• Some signals are not observable.

You can log signals using the following methods:

• Outports in the model
• File scope blocks in the model
• File scopes created using Simulink Real-Time Explorer
• File scopes created using MATLAB language

See Also
SimulinkRealTime.utils.bytes2file |
SimulinkRealTime.utils.getFileScopeData

More About
• “Configure File Scopes with Simulink Real-Time Explorer” on page 6-106
• “Log Signal Data with Outport Blocks and Simulink Real-Time Explorer” on page 6-

114
• “Log Signal Data with Outport Block and MATLAB Language” on page 6-120
• “Troubleshoot Signals Not Accessible by Name” on page 6-192
• “Simulink Real-Time Scope Usage” on page 6-21

6 Signals and Parameters

6-92

• “Target Scope Usage” on page 6-23
• “Host Scope Usage” on page 6-61
• “File Scope Usage” on page 6-94
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183

 See Also

6-93

File Scope Usage
• Simulink Real-Time supports eight file scopes. Each file scope can contain as many

signals as the target computer resources can support.
• You can have at most 128 files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name in the operating system on the target computer can have a

maximum of 260 characters. If the file name is longer than eight-dot-three format
(eight character file name, period, three character extension), the operating system
represents the file name in truncated form (for example, six characters followed by
'~1'). MATLAB commands can access the file using the fully qualified file name or the
truncated representation of the name. Some block parameters, such as the Scope
block filename parameter, require 8.3 format for the file name.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

• If you enter just the file name, the file appears in folder C:\. To put the file in a folder,
create the folder separately using the target computer command line or the
SimulinkRealTime.fileSystem.mkdir command.

• You can configure the scope to generate multiple, dynamically named files in one
session.

• Before starting the scope, copy previously acquired data to the development computer.
When the file scope starts, the software overwrites previously acquired data in files of
the specified name or name pattern. A partially overwritten file or a file that is opened
but left unwritten loses its original contents.

• You cannot read a file that was written during real-time execution until execution has
completed.

• After real-time execution, the file scope software generates a signal data file on the
target computer, even if it is running in Stand Alone mode. To access the contents of
the signal data file that a file scope creates, use the
SimulinkRealTime.fileSystem object from a development computer Command
Window. To view or examine the signal data, use the
SimulinkRealTime.utils.getFileScopeData utility and the plot function.
Saving signal data to files lets you recover signal data from a previous run in the event
of system failure.

6 Signals and Parameters

6-94

• The signal data file can quickly increase in size. To gauge the growth rate for the file,
examine the file size between runs. If the signal data file grows beyond the available
space on the disk, the signal data is corrupted.

• The file scope acquires data and writes it to the file named in the FileName
parameter. The scope writes data samples into a memory buffer of size given by the
Number of Samples parameter. It copies data from the memory buffer into the file in
blocks of size given by the WriteSize parameter.

The Number of samples parameter works with the autorestart setting.

• Autorestart is on — When the scope triggers, the scope starts collecting data into a
memory buffer. A background task examines the buffer and writes data to the disk
continuously, appending new data to the end of the file. When the scope reaches
the number of samples that you specified, it starts collecting data again,
overwriting the memory buffer. If the background task cannot keep pace with data
collection, data can be lost.

• Autorestart is off — When the scope triggers, the scope starts collecting data into a
memory buffer. It stops when it has collected the number of samples that you
specified. A background task examines the buffer and writes data to the disk
continuously, appending the new data to the end of the file.

• When real-time execution stops without an error, both the Lazy and Commit settings
of the Mode box have the same result. Both settings cause the model to open a file,
write signal data to the file, and close that file at the end of the session. The
differences are in when the software updates the FAT entry for the file.

• In Commit mode, the FAT entry and the actual file size are updated during each file
write operation.

• In Lazy mode, the FAT entry and the actual file size are updated only when the file
is closed and not during each file write operation.

Lazy mode is faster than Commit mode. However, if the target computer enters an
error state, the system can stop responding before the file is closed. In Lazy mode,
the actual file size can be lost, even though the file was written. You can lose an
amount of data equivalent to the setting of the WriteSize parameter.

• Select the type of trigger event in the Scope block dialog box by setting Trigger
Mode to Signal Triggering, Software Triggering, or Scope Triggering.

The number of samples N to log after triggering an event is equal to the value that you
entered in the Number of Samples parameter.

 File Scope Usage

6-95

See Also
SimulinkRealTime.fileSystem | SimulinkRealTime.utils.bytes2file |
SimulinkRealTime.utils.getFileScopeData | mkdir

More About
• “Configure Real-Time File Scope Blocks” on page 6-97
• “Create File Scopes with Simulink Real-Time Explorer” on page 6-102
• “Log Signal Data into Multiple Files” on page 6-110
• “Simulink Real-Time Scope Usage” on page 6-21
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183
• “Using SimulinkRealTime.fileSystem Objects” on page 12-5

6 Signals and Parameters

6-96

Configure Real-Time File Scope Blocks
Simulink Real-Time includes a specialized Scope block that you can configure to save
signal and time data to a file in the target computer file system. Add a Scope block to the
model, select Scope type File, and then configure the other parameters as described in
the following procedure.

Do not confuse Simulink Real-Time Scope blocks with standard Simulink Scope blocks.

This procedure uses the example model ex_slrt_rt_osc
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_rt_osc')))).

1 In the Command Window, open ex_slrt_rt_osc.
2 In the Simulink Editor, double-click the block labeled Scope.

The Scope block dialog box opens. By default, the target scope dialog box is
displayed.

3 In the Scope number box, a unique number is displayed that identifies the scope.
This number is incremented each time you add a Simulink Real-Time scope.

This number identifies the Simulink Real-Time Scope block and the scope screen on
the development or target computer.

4 From the Scope type list, select File. The updated dialog box opens.
5 Caution Before starting the scope, copy previously acquired data to the development

computer. When the file scope starts, the software overwrites previously acquired
data in files of the specified name or name pattern. A partially overwritten file or a
file that is opened but left unwritten loses its original contents.

To start the scope automatically when the real-time application executes, select the
Start scope when application starts check box.

In Stand Alone mode, this setting is mandatory because the development computer
is not available to issue a command to start scopes.

6 In the Number of samples box, enter the number of values to be acquired in a data
package.

The Number of samples parameter works with the autorestart setting.

 Configure Real-Time File Scope Blocks

6-97

• Autorestart is on — When the scope triggers, the scope starts collecting data into
a memory buffer. A background task examines the buffer and writes data to the
disk continuously, appending new data to the end of the file. When the scope
reaches the number of samples that you specified, it starts collecting data again,
overwriting the memory buffer. If the background task cannot keep pace with data
collection, data can be lost.

• Autorestart is off — When the scope triggers, the scope starts collecting data into
a memory buffer. It stops when it has collected the number of samples that you
specified. A background task examines the buffer and writes data to the disk
continuously, appending the new data to the end of the file.

7 In the Number of pre/post samples box, enter the number of samples to save or
skip. To save N samples before a trigger event, specify the value −N. To skip N
samples after a trigger event, specify the value N. The default is 0.

8 In the Decimation box, enter a value to indicate how often data is collected, in units
of sample time. The value 1 indicates that data is collected at each sample time.
Values of 2 or more indicates that data is collected at less than every sample time.

9 From the Trigger mode list, select one of the following:

From the Trigger mode list, select one of the following:

• FreeRun or Software Triggering — No extra parameters.
• Signal Triggering — enter additional parameters, as required:

• In the Trigger signal box, enter the index of a signal previously added to the
scope.

This parameter does not apply if the Add signal port to connect a signal
trigger source check box is selected.

• (Alternatively) Click the Add signal port to connect a signal trigger source
check box, then connect an arbitrary trigger signal to the port Trigger signal.

• In the Trigger level box, enter a value for the signal to cross before
triggering.

• From the Trigger slope list, select one of Either, Rising, or Falling.
• Scope Triggering — enter additional parameters, as required:

• In the Trigger scope number box, enter the scope number of a Scope block.
If you use this trigger mode, add a second Scope block to your Simulink model.

6 Signals and Parameters

6-98

• To trigger one scope on a specific sample of another scope, enter a value in
Sample to trigger on (-1 for end of acquisition). The default value of 0
causes the triggering scope and the triggered scope to start simultaneously.

10 In the Filename box, enter a name for the file to contain the signal data.

By default, the target computer writes the signal data to C:\data.dat.

A fully qualified file name in the operating system on the target computer can have a
maximum of 260 characters. If the file name is longer than eight-dot-three format
(eight character file name, period, three character extension), the operating system
represents the file name in truncated form (for example, six characters followed by
'~1'). MATLAB commands can access the file using the fully qualified file name or
the truncated representation of the name. Some block parameters, such as the Scope
block filename parameter, require 8.3 format for the file name.

11 From the Mode list, select either Lazy or Commit.

With the Commit mode, each file write operation simultaneously updates the FAT
entry for the file. The file system maintains the actual file size after each write. With
the Lazy mode, the FAT entry is updated only when the file is closed.

If your system stops responding, you lose WriteSize bytes of data.
12 In the WriteSize box, enter the block size, in bytes, of the data chunks. This

parameter specifies that a memory buffer of length Number of samples is written to
the file in chunks of size WriteSize. By default, this parameter is 512 bytes. Using a
block size that is the same as the disk sector size improves performance.

If your system stops responding, you lose WriteSize bytes of data.
13 To have the file scope collect data up to Number of samples and then start over

again reading new data, select the AutoRestart check box.

To have the file scope collect data up to Number of samples and then stop, clear the
AutoRestart check box.

If the named signal data file exists when the file scope starts, the Simulink Real-Time
software overwrites the old data with the new signal data.

Setting this check box enables the following parameters: Dynamic file name
enabled and Max file size in bytes (multiple of WriteSize).

The file scope dialog box looks like this figure.

 Configure Real-Time File Scope Blocks

6-99

6 Signals and Parameters

6-100

14 Click OK.
15 Save the model as ex_slrt_file_osc

(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_file_osc')))). On the Simulation tab, from Save,
click Save As.

See Also
Scope | SimulinkRealTime.utils.bytes2file |
SimulinkRealTime.utils.getFileScopeData

More About
• “Simulink Real-Time Scope Usage” on page 6-21
• “File Scope Usage” on page 6-94
• “Trigger One Scope with Another Scope” on page 11-19

 See Also

6-101

Create File Scopes with Simulink Real-Time Explorer
You can create a file scope on the target computer using Simulink Real-Time Explorer.
These scopes have the full capabilities of the Scope block in File mode, but do not
persist past the current execution.

Note For information on using file scope blocks, see “Configure Real-Time File Scope
Blocks” on page 6-97 and “File Scope Usage” on page 6-94.

This procedure uses the model xpcosc. You must have already completed the following
setup:

1 Open model xpcosc. Set property Stop time to inf. On the Real-Time tab, select
Run on Target > Stop Time and set Stop Time to inf.

2 Connect to the target computer. On the Real-Time tab, toggle the Disconnected
indicator to Connected.

3 Build and download the real-time application to the target computer. On the Real-
Time tab, click Run on Target.

4 Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT
Explorer.

To configure a file scope:

1 In the Scopes pane, expand the xpcosc node.
2 To add a file scope, select File Scopes, and then click the Add Scope button on

the toolbar.
3 Expand Scope 1, and then click the Properties button on the toolbar.
4 In the Scope Properties pane, click Signals.

Add signals from the Applications Signals workspace.
5 In the Applications pane, expand both the real-time application node and the node

Model Hierarchy.
6 Select the model node and then click the View Signals button on the toolbar.
7 In the Signals workspace, to add signal Signal Generator to Scope1, drag signal

Signal Generator to the Scope1 properties workspace.

6 Signals and Parameters

6-102

8 Add signal Integrator1 to Scope 1 in the same way.
9 In the Scope Properties pane, click File.
10 Enter a name in the File name text box, for example scope1.dat.
11 To have the file scope collect data up to Number of samples and then start over

again reading new data, select the AutoRestart check box.
12 Leave the Dynamic File Mode check box cleared.
13 To start execution, click the real-time application and then click the Start

button on the toolbar.
14 Caution Before starting the scope, copy previously acquired data to the development

computer. When the file scope starts, the software overwrites previously acquired
data in files of the specified name or name pattern. A partially overwritten file or a
file that is opened but left unwritten loses its original contents.

To start Scope 1, click Scope 1 in the Scopes pane, and then click the Start Scope
button on the toolbar.

15 To stop Scope 1, click Scope 1 in the Scopes pane, and then click the Stop Scope
button on the toolbar.

For file scopes, before adding or removing signals, stop the scope first.
16 To stop execution, click the real-time application, and then click the Stop

button on the toolbar.
17 To view the file that you generated, in the Targets pane, expand the target computer

and then double-click File System.
18 Select C:\. The dialog box looks like this figure.

 Create File Scopes with Simulink Real-Time Explorer

6-103

6 Signals and Parameters

6-104

19 To retrieve the file from the target computer, select the file in the target computer
File System pane. Drag it to the MATLAB Current Folder pane or to a Windows
Explorer window.

You can create a file scope from the list of scope types by clicking Add Scope next to
scope type File Scopes.

To rename file SCOPE1.DAT, right-click the file name, select Rename, type the new name
in the text box, and then click Enter.

To delete file SCOPE1.DAT, right-click the file name and select Delete.

To make both workspaces visible at the same time, drag one workspace tab down until
the icon appears in the middle of the dialog box. Continue to drag the workspace until
the cursor reaches the required quadrant, and then release the mouse button.

To save your Simulink Real-Time Explorer layout, click File > Save Layout. In a later
session, you can click File > Restore Layout to restore your layout.

See Also
SimulinkRealTime.utils.bytes2file |
SimulinkRealTime.utils.getFileScopeData

More About
• “Log Signal Data into Multiple Files” on page 6-110
• “Configure File Scopes with Simulink Real-Time Explorer” on page 6-106
• “Using SimulinkRealTime.fileSystem Objects” on page 12-5
• “Create Signal Groups with Simulink Real-Time Explorer” on page 6-58
• “Configure Scope Sampling with Simulink Real-Time Explorer” on page 6-37
• “Trigger Scopes with Simulink Real-Time Explorer” on page 6-41
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183

 See Also

6-105

Configure File Scopes with Simulink Real-Time Explorer
You can configure your file scopes to facilitate data logging. You can configure a file scope
whether you added a Scope block to your model or added the scope at run time.

This procedure uses the model xpcosc. You must have already completed the procedure
in “Create File Scopes with Simulink Real-Time Explorer” on page 6-102. Target
execution and scopes must be stopped.

1 Select Scope 1, and then open the Properties pane (on the Scopes toolbar).
2 In the Scope 1 Properties pane, click File.
3 Enter a name in the File name text box, for example scope2.dat.

File names on the target computer are limited to eight characters in length, not
counting the file extension. If the name is longer than eight characters, the software
truncates it to six characters and adds '~1' to the end of the file name.

If you enter just the file name, the file appears in folder C:\. To put the file in a
folder, create the folder separately using the target computer command line or
MATLAB language.

A fully qualified file name in the operating system on the target computer can have a
maximum of 260 characters. If the file name is longer than eight-dot-three format
(eight character file name, period, three character extension), the operating system
represents the file name in truncated form (for example, six characters followed by
'~1'). MATLAB commands can access the file using the fully qualified file name or
the truncated representation of the name. Some block parameters, such as the Scope
block filename parameter, require 8.3 format for the file name.

If a file with this name exists when you start the file scope, the file scope overwrites
the old data with the new data.

4 Select File mode Commit.

The default File mode is Lazy. When real-time execution stops without an error,
both the Lazy and Commit settings of the Mode box have the same result. Both
settings cause the model to open a file, write signal data to the file, and close that file
at the end of the session. The differences are in when the software updates the FAT
entry for the file.

6 Signals and Parameters

6-106

• In Commit mode, the FAT entry and the actual file size are updated during each
file write operation.

• In Lazy mode, the FAT entry and the actual file size are updated only when the
file is closed and not during each file write operation.

Lazy mode is faster than Commit mode. However, if the target computer enters an
error state, the system can stop responding before the file is closed. In Lazy mode,
the actual file size can be lost, even though the file was written. You can lose an
amount of data equivalent to the setting of the WriteSize parameter.

5 To have the file scope collect data up to Number of samples and then start over
again reading new data, select the AutoRestart check box.

6 Leave the Dynamic File Mode check box cleared.
7 Leave Write Size set to the default value of 512.

Using a block size that is the same as the disk sector size improves performance.
8 Leave Max write file size set to the default value, which is a multiple of Write Size.
9 Start execution (on the Applications toolbar).
10 Caution Before starting the scope, copy previously acquired data to the development

computer. When the file scope starts, the software overwrites previously acquired
data in files of the specified name or name pattern. A partially overwritten file or a
file that is opened but left unwritten loses its original contents.

Start Scope 1(on the Scopes toolbar). Let it run for up to a minute.
11 Stop Scope 1 (on the Scopes toolbar).
12 Stop execution (on the Applications toolbar).

 Configure File Scopes with Simulink Real-Time Explorer

6-107

6 Signals and Parameters

6-108

13 To retrieve the file from the target computer, select the file in the target computer
File System pane. Drag it to the MATLAB Current Folder pane or to a Windows
Explorer window.

To rename file SCOPE2.DAT, right-click the file name, select Rename, type the new name
in the text box, and then click Enter.

To delete file SCOPE2.DAT, right-click the file name and select Delete.

See Also
SimulinkRealTime.utils.bytes2file |
SimulinkRealTime.utils.getFileScopeData | mkdir

More About
• “Log Signal Data into Multiple Files” on page 6-110
• “Using SimulinkRealTime.fileSystem Objects” on page 12-5
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183

 See Also

6-109

Log Signal Data into Multiple Files
You can acquire signal data to store in multiple, dynamically named files on the target
computer. You can then examine one file while the scope continues to acquire data to
store in other files. To acquire data for multiple files, add a file scope to the real-time
application, and then configure that scope to log signal data to multiple files.

Using model xpcosc, complete the setup tasks in “Create File Scopes with Simulink Real-
Time Explorer” on page 6-102.

1 In Simulink Real-Time Explorer, in the Scopes pane, expand the xpcosc node.
2 Select File Scopes and expand node File Scopes.
3 Expand Scope 1 and then click the Properties button on the toolbar.
4 In the Scope Properties pane, click File.
5 Select the AutoRestart check box.

When you select the AutoRestart box, the file scope collects data up to Number of
samples and then starts over again reading new data. Setting AutoRestart enables
the following parameters: Dynamic file name enabled and Max file size in bytes
(multiple of WriteSize).

6 Select the Dynamic File Mode check box.
7 To enable the file scope to create multiple log files based on the same name, in the

File name box, enter a name like scope1_<%>.dat.

This sequence directs the software to create up to nine log files, scope1_1.dat to
scope1_9.dat, on the target computer file system.

You can configure the file scope to create up to 99999999 files (<%%%%%%%%>.dat).
The length of a file name, including the specifier, cannot exceed eight characters.

8 In the Max write file size box, enter a value to limit the size of the signal log files.
This value must be a multiple of the Write Size value. For example, if the write size
is 512, enter 4096 to limit each log file size to 4096 bytes.

9 To start execution, click the real-time application and then click the Start
button on the toolbar.

10 Caution Before starting the scope, copy previously acquired data to the development
computer. When the file scope starts, the software overwrites previously acquired

6 Signals and Parameters

6-110

data in files of the specified name or name pattern. A partially overwritten file or a
file that is opened but left unwritten loses its original contents.

To start Scope 1, click Scope 1 in the Scopes pane and then click the Start Scope
button on the toolbar.

Let Scope 1 run for up to a minute.
11 To stop Scope 1, click Scope 1 in the Scopes pane and then click the Stop Scope

button on the toolbar.
12 To stop execution, click the real-time application and then click the Stop

button on the toolbar.
13 To view the files that you generated, in the Targets pane, expand the target

computer, and then double-click File System.
14 Select C:\. The dialog box looks like this figure.

 Log Signal Data into Multiple Files

6-111

The software creates a log file named SCOPE1_1.DAT and writes data to that file.
When the size of the first file reaches 4096 bytes (Max write file size), the software
closes the first file and creates the second file, SCOPE1_2.DAT. When the size of the

6 Signals and Parameters

6-112

second file reaches 4096 bytes, the software creates the third file, the fourth file, and
so on.

If the real-time application continues to collect data after the software closes
SCOPE1_9.DAT, the software reopens SCOPE1_1.DAT, SCOPE1_2.DAT, and so on,
overwriting the existing contents.

15 Drag each file from the target computer File System pane to the MATLAB Current
Folder pane or to a Windows Explorer window.

See Also
File System | SimulinkRealTime.utils.bytes2file |
SimulinkRealTime.utils.getFileScopeData

More About
• “File Scope Usage” on page 6-94
• “Using SimulinkRealTime.fileSystem Objects” on page 12-5
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183

 See Also

6-113

Log Signal Data with Outport Blocks and Simulink Real-
Time Explorer

To use Simulink Real-Time Explorer for signal logging, add an Outport block to your
Simulink model. Activate logging on the Data Import/Export pane in the Configuration
Parameters dialog box.

To access the data log that the real-time application creates when it is running on the
target computer, use SimulinkRealTime.target Properties.

The example begins with the model ex_slrt_rt_osc
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_rt_osc')))). The final configured model is ex_slrt_outport_osc
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_outport_osc')))):

The logged outputs are the signals connected to Simulink Outport blocks. The model has
one Outport block, with index 1. This Outport block shows the signals leaving the block
labeled Mux.

Data Logs
Simulink Real-Time stores logged data in four data logs that you can access on the
development computer by using SimulinkRealTime.target Properties. In the following list,

6 Signals and Parameters

6-114

tg is the name of the SimulinkRealTime.target object that you use to communicate
with the target computer.

• tg.TimeLog — Time or T-vector, specified as a vector of double. To turn on, in the
Data Import/Export pane, set the Time model parameter.

• tg.OutputLog — Output or Y-vector, specified as a matrix. To turn on, in the Data
Import/Export pane, set the Output model parameter.

• tg.TETLog — Task-execution-time vector, specified as a vector of double. To turn on,
in the Simulink Real-Time Options pane, set the Monitor Task Execution Time
model parameter.

• tg.StateLog — State or X-vector, specified as a matrix. To turn on, in the Data
Import/Export pane, set the State model parameter.

Turn on logging for only the data that you are interested in.

Each Outport block has an associated column vector in tg.OutputLog. You can access
the data that corresponds to a particular Outport block by specifying the column vector
for that block. For example, to access the data that corresponds to Outport 2, use
tg.outputlog(:,2).

To download part of the logs, use the target object method getlog.

Note

• The data logging variables tout, xout, yout, and logsout are available only when
you use Simulink to simulate the model in non-real-time.

• You cannot use the Simulation Data Inspector to create a data log on the target
computer. You can log only signals that are connected to an Outport block.

Configure the Model for Data Logging
1 Open Configuration Parameters. On the Real-Time tab, click Hardware Settings.
2 To allow Simulink to log signals. Select Data Import/Export > Time and select

Data Import/Export > Output. These check boxes are selected by default.
3 To plot the task execution time, select Code Generation > Simulink Real-Time

Options > Monitor Task Execution Time. This check box is selected by default.

 Log Signal Data with Outport Blocks and Simulink Real-Time Explorer

6-115

4 To create a buffer for the signals that you are logging, set Code Generation >
Simulink Real-Time Options > Signal logging buffer size in doubles to the
required value.

The default value of 100000 units is large enough for this model.
5 Save the model as ex_slrt_outport_osc

(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_outport_osc')))). On the Simulation tab, from Save,
click Save as.

Log the Data
1 Connect to the target computer. On the Real-Time tab, toggle the Disconnected

indicator to Connected.
2 Build and download the real-time application to the target computer. On the Real-

Time tab, click Run on Target.
3 Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT

Explorer.
4 To start execution, click the real-time application, and then on the toolbar, click the

Start button .
5 To stop execution, click the real-time application, and then on the toolbar, click the

Stop button .

Download and Plot the Data
1 Download and plot the logged times and output values from the target computer. In

the Command Window, type:

tg = slrt;
timelog = tg.TimeLog;
outputlog = tg.OutputLog;
plot(timelog, outputlog)

6 Signals and Parameters

6-116

2 Download and plot the task execution times for the target computer. In the Command
Window, type:

tetlog = tg.TETLog;
plot(timelog, tetlog)

 Log Signal Data with Outport Blocks and Simulink Real-Time Explorer

6-117

The plot shown is the result of a real-time execution.
3 In the Command Window, type:

tg.AvgTET

ans =

 5.7528e-006

6 Signals and Parameters

6-118

The percentage of CPU performance is the average TET divided by the sample time.

Task execution time (TET) measures how long it takes the kernel to run for one base-rate
time step. For a multirate model, use the profiler to find out what the execution time is for
each rate.

See Also
Real-Time Application Properties | getlog

More About
• “Simulate Simulink Model by Using MATLAB Language”
• “Log Signal Data with Outport Block and MATLAB Language” on page 6-120
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183
• “Signal Logging Buffer Size” on page 6-127

 See Also

6-119

Log Signal Data with Outport Block and MATLAB
Language

To use MATLAB language for signal logging, add an Outport block to your Simulink
model. Activate logging by using MATLAB commands.

To access the data log that the real-time application creates when it is running on the
target computer, use SimulinkRealTime.target Properties.

The example begins with the model ex_slrt_rt_osc
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_rt_osc')))). The final configured model is ex_slrt_outport_osc
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_outport_osc')))):

The logged outputs are the signals connected to Simulink Outport blocks. The model has
one Outport block, with index 1. This Outport block shows the signals leaving the block
labeled Mux.

Data Logs with SimulinkRealTime.target Properties
Simulink Real-Time stores logged data in four data logs that you can access on the
development computer by using SimulinkRealTime.target Properties. In the following list,

6 Signals and Parameters

6-120

tg is the name of the SimulinkRealTime.target object that you use to communicate
with the target computer.

• tg.TimeLog — Time or T-vector, specified as a vector of double. To turn on, set the
SaveTime model parameter.

• tg.OutputLog — Output or Y-vector, specified as a matrix. To turn on, set the
SaveOutput model parameter.

• tg.TETLog — Task-execution-time vector, specified as a vector of double. To turn on,
set the RL32LogTETModifier model parameter.

• tg.StateLog — State or X-vector, specified as a matrix. To turn on, set the
SaveState model parameter.

Note The tg.TimeLog, tg.OutputLog, tg.TeTLog, and tg.StateLog properties will
be removed in a future release.

Turn on logging for only the data that you are interested in.

Each Outport block has an associated column vector in tg.OutputLog. You can access
the data that corresponds to a particular Outport block by specifying the column vector
for that block. For example, to access the data that corresponds to Outport 2, use
tg.outputlog(:,2).

To download part of the logs, use the target object method getlog.

Note

• The data logging variables tout, xout, yout, and logsout are available only when
you use Simulink to simulate the model in non-real-time.

• You cannot use the Simulation Data Inspector to create a data log on the target
computer. You can log only signals that are connected to an Outport block.

Data Logs with the Simulation Data Inspector and Data
Profiler
The tg.TimeLog, tg.OutputLog, tg.TeTLog, and tg.StateLog properties will be
removed in a future release. Consider these replacement approaches.

 Log Signal Data with Outport Block and MATLAB Language

6-121

If using . . . Replace with . . .
tg.TimeLog,
tg.OutputLog, or
tg.StateLog

Access the Simulink.sdi.Run object for a run created by
logging signals of interest to the Simulation Data Inspector. From
the Simulink.sdi.Run object you can get
Simulink.sdi.Signal objects that you can use to view data.
For example:

run = Simulink.sdi.getRun(runID);
% Get signal objects for the signals in the run
signal1 = fuelRun.getSignalByIndex(4);
signal2 = fuelRun.getSignalByIndex(9);

tg.TETLog The Code Execution Profiling Report. Setup the profiler and then
use:

profiler_object = getProfilerData(tg);

For an example, see “Data Logging With Simulation Data Inspector (SDI)” on page 15-
241.

Configure the Model for Data Logging
1 Open model ex_slrt_rt_osc.

mdl = 'ex_slrt_rt_osc';
open_system(mdl);

2 Check that signal data and task execution time are being logged.

get_param(mdl,'SaveTime')

ans =

on

get_param(mdl,'SaveOutput')

ans =

on

get_param(mdl,'RL32LogTETModifier')

6 Signals and Parameters

6-122

ans =

on

These parameters are set to 'on' by default.
3 Check that Signal logging buffer size in doubles is set to a value large enough to

accommodate the number of signals that you are logging.

get_param(mdl,'RL32LogBufSizeModifier')

ans =

100000

The default value of 100000 units is large enough for this model.
4 Save the model under a new name.

save_system(mdl,'ex_slrt_outport_osc');

Log the Data
1 Build the real-time application.

rtwbuild(mdl);
tg = slrt('TargetPC1');
load(tg,mdl);

2 Set the stop time and start execution.

tg.stoptime = 1;
start(tg);

3 Stop execution.

stop(tg);

Download and Plot the Data
1 Download and plot the logged times and output values from the target computer. In

the Command Window, type:

tg = slrt;
timelog = tg.TimeLog;

 Log Signal Data with Outport Block and MATLAB Language

6-123

outputlog = tg.OutputLog;
plot(timelog, outputlog)

2 Download and plot the task execution times for the target computer. In the Command
Window, type:

tetlog = tg.TETLog;
plot(timelog, tetlog)

6 Signals and Parameters

6-124

The plot shown is the result of a real-time execution.
3 In the Command Window, type:

tg.AvgTET

ans =

 5.7528e-006

 Log Signal Data with Outport Block and MATLAB Language

6-125

The percentage of CPU performance is the average TET divided by the sample time.

Task execution time (TET) measures how long it takes the kernel to run for one base-rate
time step. For a multirate model, use the profiler to find out what the execution time is for
each rate.

See Also
Real-Time Application Properties | getlog

More About
• “Simulate Simulink Model by Using MATLAB Language”
• “Log Signal Data with Outport Blocks and Simulink Real-Time Explorer” on page 6-

114
• “Signal Logging Buffer Size” on page 6-127

6 Signals and Parameters

6-126

Signal Logging Buffer Size
Your real-time application sets aside a buffer for data logging. You specify the buffer size
in the Code Generation > Simulink Real-Time Options pane of the Configuration
Parameters dialog box. Set Signal logging buffer size in doubles to a value large
enough to accommodate the logged signals.

The default buffer size is 100000 units (800000 bytes). Specify only the number of units
that you need. Memory dedicated to data logging is not available for scopes and other
Simulink Real-Time features.

The Simulink Real-Time software calculates the number of samples N for a signal using
this formula:

N = Buffer size in doubles / Logged signals

In this equation, Logged signals, the number of logged signals, breaks down as
follows:

• 1 for time
• 1 for task execution time
• 1 for each logged output
• 1 for each logged state

The scopes copy the last N samples from the log buffer to the target object logs
(tg.TimeLog, tg.OutputLog, tg.StateLog, and tg.TETLog).

 Signal Logging Buffer Size

6-127

Configure File Scopes with MATLAB Language
This procedure shows how to trace signals with file scopes using the Simulink model
xpcosc. You must have already built and downloaded the real-time application for this
model. It also assumes that you are using a serial link.

Note The signal data file can quickly increase in size. To gauge the growth rate of the
file, examine the file size between runs. If the signal data file grows beyond the available
space on the disk, the signal data is corrupted.

1 Create a target object tg that represents target computer TargetPC1. Type:

tg = SimulinkRealTime.target('TargetPC1')
2 To get a list of signals, type:

tg.ShowSignals = 'on'

The Command Window displays a list of the target object properties for the available
signals. For example, these signals are part of the model xpcosc:

Target: TargetPC1
 Connected = Yes
 Application = xpcosc
.
.
.
 Scopes = 1
 NumSignals = 7
 ShowSignals = on
 Signals =
 INDEX VALUE Type BLOCK NAME LABEL
 0 0.000000 DOUBLE Gain
 1 0.000000 DOUBLE Gain1
 2 0.000000 DOUBLE Gain2
 3 0.000000 DOUBLE Integrator
 4 0.000000 DOUBLE Integrator1
 5 0.000000 DOUBLE Signal Generator
 6 0.000000 DOUBLE Sum
.
.
.

6 Signals and Parameters

6-128

3 Start running your real-time application. Type:

start(tg)
4 Create a scope to be displayed on the target computer. For example, to create a

scope with an identifier of 2 and a scope object name of sc2, type:

sc2 = addscope(tg, 'file', 2)

No name is initially assigned to FileName. After you start the scope, Simulink Real-
Time assigns a name for the file to acquire the signal data. This name typically
consists of the scope object name, ScopeId, and the beginning letters of the first
signal added to the scope.

sc2 =

Simulink Real-Time Scope
 Application = xpcosc
 ScopeId = 2
 Status = Interrupted
 Type = File
 NumSamples = 250
 NumPrePostSamples = 0
 Decimation = 1
 TriggerMode = FreeRun
 TriggerSignal = -1
 TriggerLevel = 0.000000
 TriggerSlope = Either
 TriggerScope = 2
 TriggerSample = 0
 FileName = unset
 WriteMode = Lazy
 WriteSize = 512
 AutoRestart = off
 DynamicFileName = off
 MaxWriteFileSize = 536870912
 Signals = no Signals defined

5 Add signals to the scope object. For example, to add Integrator1 and Signal
Generator, type:

addsignal(sc2, [4,5])

sc2 =

Simulink Real-Time Scope

 Configure File Scopes with MATLAB Language

6-129

 Application = xpcosc
 ScopeId = 2
 Status = Interrupted
 Type = File
.
.
.
 FileName = unset
 WriteMode = Lazy
 WriteSize = 512
 AutoRestart = off
 DynamicFileName = off
 MaxWriteFileSize = 536870912
 Signals = 4 : Integrator1
 5 : Signal Generator

The target computer displays the following messages:

Scope: 2, signal 4 added

Scope: 2, signal 5 added

After you add signals to a scope object, the file scope does not acquire signal values
until you start the scope.

6 Caution Before starting the scope, copy previously acquired data to the development
computer. When the file scope starts, the software overwrites previously acquired
data in files of the specified name or name pattern. A partially overwritten file or a
file that is opened but left unwritten loses its original contents.

Start the scope. For example, to start scope sc2, type:

start(sc2)

The Command Window displays a list of the scope object properties. FileName is
assigned a default file name to contain the signal data for the file scope. This name
typically consists of the scope object name, ScopeId, and the beginning letters of the
first signal added to the scope.

Application= xpcosc
 ScopeId = 2
 Status = Pre-Acquiring
 Type = File
.

6 Signals and Parameters

6-130

.

.
 FileName = c:\sc2Integ.dat
 Mode = Lazy
 WriteSize = 512
 AutoRestart= off
 DynamicFileName = off
 MaxWriteFileSize = 536870912
 Signals = 4 : Integrator1
 5 : Signal Generator

7 Stop the scope. Type:

stop(sc2)
8 Stop the real-time application. In the Command Window, type:

stop(tg)

See Also
SimulinkRealTime.fileSystem | SimulinkRealTime.utils.bytes2file |
SimulinkRealTime.utils.getFileScopeData | plot

More About
• “Using SimulinkRealTime.fileSystem Objects” on page 12-5
• “Monitor Signals with MATLAB Language” on page 6-9

 See Also

6-131

Tune Parameters with Simulink Real-Time Explorer
You can use Simulink Real-Time Explorer to change parameters in your real-time
application while it is running or between runs. You do not need to rebuild the Simulink
model, set the Simulink interface to external mode, or connect the Simulink interface with
the real-time application.

This procedure uses the model xpcosc.

Set Up Host Scope
Before tuning parameters, do the following:

1 Open model xpcosc. Set property Stop time to inf. On the Real-Time tab, select
Run on Target > Stop Time and set Stop Time to inf.

2 Connect to the target computer. On the Real-Time tab, toggle the Disconnected
indicator to Connected.

3 Build and download the real-time application to the target computer. On the Real-
Time tab, click Run on Target.

4 Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT
Explorer.

5 In the Scopes pane, expand the xpcosc node.
6 To add a host scope, select Host Scopes, and then click the Add Scope button on

the toolbar.
7 In the Applications pane, expand the real-time application node, and then the node

Model Hierarchy.
8 Double-click the xpcosc node.
9 To add signal Signal Generator to Scope1, drag signal Signal Generator from

the xpcosc signal list to the Scope1 properties workspace.

Add signal Integrator1 to Scope1 in the same way.
10 Expand Scope 1, and then click the Properties button on the toolbar.

To display the host scope signals, in the Scope Properties pane, click Signals.
11 To open the host scope display, select Scope 1, and then click the View Scope

button on the toolbar.

6 Signals and Parameters

6-132

See “Create Host Scopes with Simulink Real-Time Explorer” on page 6-66.

Initial Values
1 To view the initial parameter values, in the Applications pane, expand both the real-

time application node and node Model Hierarchy.
2 Select the model node, and then click the View Parameters button on the

toolbar.
3 Start Scope 1(on the toolbar).
4 Start execution (on the toolbar).

 Tune Parameters with Simulink Real-Time Explorer

6-133

Updated Values
To update a parameter value:

1 In the Applications pane, expand both the real-time application node and node
Model Hierarchy.

2 Select the model node, and then click the View Parameters button on the
toolbar.

The Parameters workspace opens, showing a table of parameters with properties and
actions.

3 To change the value of the Gain for block Gain1 to 100, type 100 into the Value box,
and then press Enter.

To revert the Gain for block Gain1 to its previous value, click the Revert button .
4

Click the Apply parameter value(s) changes button .

Simulink Real-Time Explorer looks like this figure.

6 Signals and Parameters

6-134

5 Stop Scope 1 (on the toolbar).
6 Stop execution (on the toolbar).

Simulink Real-Time does not support parameters of multiword data types.

To make both workspaces visible at the same time, drag one workspace tab down until
the icon appears in the middle of the dialog box. Continue to drag the workspace until
the cursor reaches the required quadrant, and then release the mouse button.

To save your Simulink Real-Time Explorer layout, click File > Save Layout. In a later
session, you can click File > Restore Layout to restore your layout.

 Tune Parameters with Simulink Real-Time Explorer

6-135

See Also

More About
• “Create Host Scopes with Simulink Real-Time Explorer” on page 6-66
• “Configure Real-Time Host Scope Blocks” on page 6-62
• “Create Parameter Groups with Simulink Real-Time Explorer” on page 6-137
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183
• “Troubleshoot Parameters Not Accessible by Name” on page 6-194
• “Troubleshoot Instrument Label Not Present” on page 6-196

6 Signals and Parameters

6-136

Create Parameter Groups with Simulink Real-Time
Explorer

When testing a complex model composed of many reference models, you tune parameters
from multiple parts and levels of the model. To do so, create a parameter group.

This procedure uses the model xpcosc. You must have already completed the following
setup:

1 Open model xpcosc.
2 Connect to the target computer. On the Real-Time tab, toggle the Disconnected

indicator to Connected.
3 Build and download the real-time application to the target computer. On the Real-

Time tab, click Run on Target.
4 Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT

Explorer.

To create a parameter group:

1 In the Applications pane, expand the real-time application node, and then right-click
the Groupings node.

2 Click New Parameter Group.
3 In the Add New Parameter Group Item dialog box, enter a name in the Name text

box (for example, ParamGroup1.par). In the Location text box, enter a folder for
the group file.

4 Click OK. A new parameter group appears, along with its Parameter Group
workspace.

5 In the Applications pane, expand both the real-time application node and the node
Model Hierarchy.

6 Select the model node, and then click the View Parameters button on the
toolbar.

The Parameters workspace opens, showing a table of parameters with properties and
actions.

7 In the Parameters workspace, to add parameter Amplitude to ParamGroup1.par,
drag parameter Amplitude to the ParamGroup1.par properties workspace.

 Create Parameter Groups with Simulink Real-Time Explorer

6-137

8 Add parameter Frequency to ParamGroup1.par in the same way.
9

Press Enter, and then click the Save button on the toolbar.

Parameters are defined within a particular real-time application. To open a parameter
group from the File > Open > Group menu, you must first select an application.

To remove parameters from the parameter group, select the parameter items in the group
list and click Delete Parameters.

To remove the parameter group, navigate to the parameter group under Groupings >
Parameters, right-click the parameter group, and click Remove.

To make both workspaces visible at the same time, drag one workspace tab down until
the icon appears in the middle of the dialog box. Continue to drag the workspace until
the cursor reaches the required quadrant, and then release the mouse button.

To save your Simulink Real-Time Explorer layout, click File > Save Layout. In a later
session, you can click File > Restore Layout to restore your layout.

6 Signals and Parameters

6-138

See Also

More About
• “Tune Parameters with Simulink Real-Time Explorer” on page 6-132
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183

 See Also

6-139

Tune Parameters with MATLAB Language
You use the MATLAB functions to change block parameters. With these functions, you do
not need to set the Simulink interface to external mode. You also do not need to connect
the Simulink interface with the real-time application.

You can download parameters to the real-time application while it is running or between
runs. You can change parameters in your real-time application without rebuilding the
Simulink model and change them back to their original values. using Simulink Real-Time
functions.

Note

• Simulink Real-Time does not support parameters of multiword data types.
• Parameter access by parameter index will be removed in a future release. Access

parameters by parameter name instead.
• Method names are case-sensitive and must be complete. Property names are not case-

sensitive and do not need to be complete, as long as they are unique.

This procedure uses the Simulink model xpcosc. You must have already created and
downloaded the real-time application to the default target computer.

1 In the Command Window, type:

tg = slrt;

start(tg)

The target computer displays the following message:

System: execution started (sample time: 0.001000)
2 Display a list of parameters. Type:

tg.ShowParameters = 'on'

The ShowParameters command displays a list of properties for the target object.

Target: TargetPC1
 Connected = Yes

6 Signals and Parameters

6-140

 Application= xpcosc
.
.
.
 NumParameters = 7
 ShowParameters = on
 Parameters =

 VALUE TYPE SIZE PARAMETER NAME BLOCK NAME
 1000000 DOUBLE Scalar Gain Gain
 400 DOUBLE Scalar Gain Gain1
 1000000 DOUBLE Scalar Gain Gain2
 0 DOUBLE Scalar InitialCondition Integrator
 0 DOUBLE Scalar InitialCondition Integrator1
 4 DOUBLE Scalar Amplitude Signal Generator
 20 DOUBLE Scalar Frequency Signal Generator

3 Change the gain. For example, to change the Gain1 block, type:

pt = setparam(tg, 'Gain1', 'Gain', 800)

The setparam method returns a structure that stores the source information, the
previous value, and the new value.

When you change parameters, the changed parameters in the target object are
downloaded to the real-time application. The development computer displays the
following message:

pt =

 Source: {'Gain1' 'Gain'}
 OldValues: 400
 NewValues: 800

The real-time application runs. The plot frame updates the signals for the active
scopes.

4 Stop the real-time application. In the Command Window, type:

stop(tg)
5 To reset to the previous values, type:

pt = setparam(tg, pt.Source{1}, pt.Source{2}, pt.OldValues)

pt =

 Tune Parameters with MATLAB Language

6-141

 Source: {'Gain1' 'Gain'}
 OldValues: 800
 NewValues: 400

See Also

More About
• “Troubleshoot Parameters Not Accessible by Name” on page 6-194
• “Troubleshoot Instrument Label Not Present” on page 6-196

6 Signals and Parameters

6-142

Tune Parameters with Simulink External Mode
You use Simulink external mode to connect your Simulink model to your real-time
application. The model becomes a user interface to your real-time application. You set up
the Simulink interface in external mode to establish a communication channel between
your Simulink model and your real-time application.

In Simulink external mode, when you change parameters in the Simulink model, Simulink
downloads those parameters to the real-time application while it is running. You can
change parameters in your program without rebuilding the Simulink model to create a
new real-time application.

Note Simulink Real-Time does not support parameters of multiword data types.

After you download your real-time application to the target computer, you can connect
your Simulink model to the real-time application. This procedure uses the Simulink model
xpcosc. You must have already built and downloaded the real-time application for that
model.

1 Open model xpcosc.
2 Connect to the target computer. On the Real-Time tab, toggle the Disconnected

indicator to Connected.
3 Build and download the real-time application to the target computer. On the Real-

Time tab, click Run on Target.

The real-time application begins running on the target computer, and the target
computer displays the following message:

System: execution started (sample time: 0.000250)
4 From the Simulation block diagram, double-click the block labeled Gain1
5 In the Block Parameters: Gain1 parameter dialog box, the Gain text box, enter 800.

Click OK.

When you change a MATLAB variable and click OK, the changed parameters in the
model are downloaded to the real-time application.

6 To stop the simulation, on the Real-Time tab click Stop.
7 Disconnect to the target computer. On the Real-Time tab, toggle the Connected

indicator to Disconnected.

 Tune Parameters with Simulink External Mode

6-143

The Simulink model is disconnected from the real-time application. If you then
change a block parameter in the Simulink model, the real-time application does not
change.

Tuning with Batch Mode and Update All Parameters
By using Batch Mode, you can tune multiple parameters and apply the tuning changes at
once, instead of tuning one parameter at a time. This example uses model xpcosc
(matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'rtw',
'targets', 'xpc', 'xpcdemos', 'xpcosc')))).

1 Open model xpcosc.
2 In the Simulink Editor, on the Real-Time tab, click Run on Target.
3 On the Real-Time tab, click Prepare > Batch Mode. The editor remains in batch

mode until you click Batch Mode again.

To set parameter values, you can either set values by clicking on each block or by
using the Model Data Editor.

4 On the Real-Time tab, click Prepare > Signal Table.
5 In the Model Data Editor, click the Parameters tab. Modify parameters values in the

Model Data Editor.
6 On the Real-Time tab, Prepare > Update All Parameters.
7 To stop the simulation before it ends, on the Real-Time tab, click Stop.

See Also

More About
• “Troubleshoot Parameters Not Accessible by Name” on page 6-194
• “Troubleshoot Instrument Label Not Present” on page 6-196

6 Signals and Parameters

6-144

Save and Reload Parameters with MATLAB Language
After you have a set of real-time application parameter values, save those values to a file
on the target computer. You can then later reload these parameter values to the same
real-time application.

You can save parameters from your real-time application while the real-time application is
running or between runs. You can save and restore parameters in your real-time
application without rebuilding the Simulink model. Load parameters to the same model
from which you save the parameter file. If you load a parameter file to a different model,
the behavior is undefined.

You save and restore parameters with the target object methods saveparamset and
loadparamset.

Requirements:

• You have a real-time application object named tg.
• You have assigned tg to the target computer.
• You have downloaded a real-time application to the target computer.
• You have parameters to save.

Save the Current Set of Real-Time Application Parameters
To save a set of parameters to a real-time application, use the saveparamset method.
This example uses the model ex_slrt_outport_osc
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_outport_osc')))). The real-time application can be stopped or running.

1 Identify the set of parameter values that you want to save.
2 Select a descriptive file name for the parameters. For example, use the model name

in the file name.
3 In the Command Window, type:

tg = slrt;
saveparamset(tg, 'ex_slrt_outport_osc_param1')

The Simulink Real-Time software creates a file named
ex_slrt_outport_osc_param1 in the current folder of the target computer, for
example, C:\ex_slrt_outport_osc_param1.

 Save and Reload Parameters with MATLAB Language

6-145

Load Saved Parameters to a Real-Time Application
To load a set of saved parameters to a real-time application, use the loadparamset
method.

Load parameters to the same model from which you save the parameter file. If you load a
parameter file to a different model, the behavior is undefined. This example uses the
model ex_slrt_outport_osc (open_system(docpath(fullfile(docroot,
'toolbox', 'xpc', 'examples', 'ex_slrt_outport_osc')))).

This section assumes that you have a parameters file saved from an earlier run of
saveparamset (see “Save the Current Set of Real-Time Application Parameters” on page
6-145).

1 From the collection of parameter value files on the target computer, select the one
that contains the parameter values you want to load.

2 In the Command Window, type:

tg = slrt;
loadparamset(tg, 'ex_slrt_outport_osc_param1')

The Simulink Real-Time software loads the parameter values into the real-time
application.

List Parameter Values Stored in a File
To list parameters and their values, load the file for a real-time application, and then turn
on the ShowParameters target object property.

You must have a parameters file saved from an earlier run of saveparamset (see “Save
the Current Set of Real-Time Application Parameters” on page 6-145).

1 Stop the real-time application. In the Command Window, type:

stop(tg)
2 Load the parameter file. Type:

tg = slrt;
loadparamset(tg, 'ex_slrt_outport_osc_param1');

3 Display a list of parameters. Type:

tg.ShowParameters = 'on'

6 Signals and Parameters

6-146

The Command Window displays a list of parameters and their values for the target
object.

See Also

More About
• “Load a parameter set from a file on the designated target file system”
• “Tune Parameters with Simulink Real-Time Explorer” on page 6-132
• “Tune Parameters with MATLAB Language” on page 6-140
• “Tune Parameters with Simulink External Mode” on page 6-143

 See Also

6-147

Tunable Block Parameters and Tunable Global
Parameters

To change the behavior of a real-time application, you can tune Simulink Real-Time
tunable parameters. In Simulink external mode, you can change the parameters directly
in the block or indirectly by using MATLAB variables to create tunable global parameters.
Simulink Real-Time Explorer and MATLAB language enable you to change parameter
values and MATLAB variables as your real-time application is executing.

Note Simulink Real-Time does not support parameters of multiword data types.

Tunable Parameters
Simulink Coder defines two kinds of parameters that can be modified during execution:
tunable block parameters and tunable global parameters.

Tunable Block Parameters

A tunable block parameter is a literal expression that you reference in a Simulink block
dialog box.

Suppose that you assign the value 5/2 to the Amplitude parameter of a Signal Generator
block. Amplitude is a tunable parameter.

Tunable Global Parameter

A tunable global parameter is a variable in the MATLAB workspace that you reference in
a Simulink block dialog box.

Suppose that you enter A in the Amplitude parameter of a Signal Generator block.
Variable A is a tunable parameter.

You can tune the values of MATLAB variables that are grouped in a parameter structure.
For example:

1 Assign a parameter structure that contains the field Ampl to variable A.
2 Enter A.Ampl in the Amplitude parameter of a Signal Generator block.
3 Change the amplitude of the signal generator by tuning the value of A.Ampl in the

MATLAB workspace during simulation.

6 Signals and Parameters

6-148

Inlined Parameters
To optimize execution efficiency, you can change the Default parameter behavior
option from Tunable to Inlined on the Code Generation > Optimization pane.

You cannot tune inlined block parameters. You can define a tunable global parameter or
Simulink.Parameter object, enter it in the parameter in the block dialog box, and tune
the MATLAB variable or object.

For more information about inlined parameters, see “Default parameter behavior”
(Simulink Coder).

Tuning in External Mode
In external mode, Simulink Real-Time connects your Simulink model to your real-time
application. The block diagram becomes a user interface for the real-time application.

You can change a block parameter value during execution in the block dialog box. When
you click OK, Simulink transfers the new value to the real-time application.

You can also change a tunable global parameter during execution by assigning a new
value to the MATLAB workspace. You must then explicitly command Simulink to transfer
the data by either:

• Press Ctrl+D.
• On the Real-Time tab, click Prepare > Signal Table. On the Parameters tab, edit

the parameters and click Update Diagram.

Tuning with Simulink Real-Time Explorer
During real-time execution, Simulink Real-Time Explorer becomes a user interface for the
real-time application.

To access a block parameter value, navigate to the block in the Explorer model hierarchy.
You can change the value in a text entry box in the parameter window. When you apply
the new value, Simulink Real-Time transfers the new value to the real-time application.

You can access a tunable global parameter at the top level of the model hierarchy. Change
it the same way as you would a tunable block parameter.

 Tunable Block Parameters and Tunable Global Parameters

6-149

You can also use Simulink Real-Time Explorer instrument panels to tune block parameters
and global parameters.

Tuning with MATLAB Language
To change the values of tunable block parameters and tunable global parameters during
execution, use the Simulink Real-Time command setparam. The following code examples
use the model xpcosc.

To change a block parameter value, use a nonempty block path and the parameter name.
For example, to change the amplitude of the signal generator:

tg = slrt;
setparam(tg, 'Signal Generator', 'Amplitude', 4.57)

To change a tunable global parameter, use the variable name. For example, to change the
amplitude of the signal generator via the parameter structure field A.Ampl:

tg = slrt;
setparam(tg, 'A.Ampl', 4.57)

See Also
getparam | setparam

More About
• “Tune Inlined Parameters with Simulink Real-Time Explorer” on page 6-151
• “Default parameter behavior” (Simulink Coder)
• “Specify Source for Data in Model Workspace” (Simulink)
• “Troubleshoot Parameters Not Accessible by Name” on page 6-194
• “Troubleshoot Instrument Label Not Present” on page 6-196
• “Tune and Experiment with Block Parameter Values” (Simulink)
• “Share and Reuse Block Parameter Values by Creating Variables” (Simulink)
• “How Generated Code Stores Internal Signal, State, and Parameter Data” (Simulink

Coder)
• “Preserve Variables in Generated Code” (Simulink Coder)

6 Signals and Parameters

6-150

Tune Inlined Parameters with Simulink Real-Time
Explorer

This procedure describes how you can tune inlined parameters through the Simulink
Real-Time Explorer.

Note Simulink Real-Time does not support parameters of multiword data types.

The following procedure starts with the Simulink model xpcosc and produces the model
ex_slrt_inlined_osc (open_system(docpath(fullfile(docroot, 'toolbox',
'xpc', 'examples', 'ex_slrt_inlined_osc')))).

Configure Model to Tune Inlined Parameters
1 Open model xpcosc.
2 In the Simulink Editor, select the input to the Scope block and mark it for data

logging with the Simulation Data Inspector.
3 Select the blocks containing the parameters that you want to tune. For example, this

procedure makes the Amplitude parameter of the Signal Generator block tunable.
To represent the amplitude, use the variable A.

a Double-click the Signal Generator block, and then enter A for the Amplitude
parameter. Click OK.

b Assign a constant to variable A. In the Command Window, type:

A = 4

The value is displayed in the MATLAB workspace.
4 Open Configuration Parameters. On the Real-Time tab, click Hardware Settings.
5 Select Code Generation > Optimization > Default parameter behavior >

Inlined.

 Tune Inlined Parameters with Simulink Real-Time Explorer

6-151

6 Click Configure.

The Model Parameter Configuration dialog box opens. The MATLAB workspace
contains the constant you assigned to A.

7 Select the line that contains your constant. Click Add to table.

6 Signals and Parameters

6-152

Add the remaining global parameters that you want to tune.
8 Click Apply, and then click OK.
9 In the Configuration Parameters dialog box, click Apply, and then OK.
10 Save the model as ex_slrt_inlined_osc. On the Simulation tab, from Save, click

Save As. For example, save it as ex_slrt_inlined_osc. For example model, see
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_inlined_osc'))).

11 Build and download the model to your target computer. On the Real-Time tab, click
Run on Target.

 Tune Inlined Parameters with Simulink Real-Time Explorer

6-153

Initial Value
This procedure assumes that you have completed the steps in “Configure Model to Tune
Inlined Parameters” on page 6-151.

1 Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT
Explorer.

2 Select the real-time application in the Applications pane (for example,
ex_slrt_inlined_osc).

3 To start execution, click the real-time application, and then click the Start
button on the toolbar.

4 In the Applications pane, expand both the real-time application node and the Model
Hierarchy node.

5 Select the model node, and then click the View Parameters button on the
toolbar. The Parameters workspace opens, showing a table of parameters with
properties and actions.

6 Signals and Parameters

6-154

6 Open the Simulation Data Inspector and view the signals you marked for signal
logging. On the Real-Time tab, click Data Inspector.

 Tune Inlined Parameters with Simulink Real-Time Explorer

6-155

Updated Value
This procedure assumes that you have completed the steps in “Initial Value” on page 6-
154.

1 Change the value of the MATLAB variable A to 2. In Simulink Real-Time Explorer,
type 2 into the Value box, and then press Enter.

To revert the value of A to its previous value, click the Revert button .
2

Click the Apply parameter value(s) changes button , and then click the Start
button on the toolbar.

The Simulation Data Inspector looks like this figure.

6 Signals and Parameters

6-156

3 To stop execution, click the real-time application, and then click the Stop
button on the toolbar.

See Also

More About
• “Tune Inlined Parameters with MATLAB Language” on page 6-158
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183
• “Troubleshoot Parameters Not Accessible by Name” on page 6-194
• “Troubleshoot Instrument Label Not Present” on page 6-196

 See Also

6-157

Tune Inlined Parameters with MATLAB Language
This procedure describes how you can tune inlined parameters through the MATLAB
interface. You must have already built and downloaded the model
ex_slrt_inlined_osc (open_system(docpath(fullfile(docroot, 'toolbox',
'xpc', 'examples', 'ex_slrt_inlined_osc')))). The model must already be
running.

Note Simulink Real-Time does not support parameters of multiword data types.

You can tune inlined parameters using a parameter ID.

• To get the ID of the inlined parameter that you want to tune, use the getparamid
function. For the block_name parameter, leave a blank ('').

• To set the new value for the inlined parameter, use the setparam function.

1 Save the following code in a MATLAB file. For example, change_inlineA.

tg = slrt; %Create Simulink Real-Time object
pid = getparamid(tg, '', 'A'); %Get parameter ID of A

if isempty(pid) %Check value of pid.
 error('Could not find A');
end

setparam(tg, pid, 100); %If pid is valid, set parameter value.

2 Execute that MATLAB file. Type:

change_inlineA

3 To see the new parameter value, type:

tg.ShowParameters = 'on'

The tg object information is displayed, including the parameter lines:

NumParameters = 1
ShowParameters = on
Parameters = INDEX VALUE TYPE SIZE PARAMETER NAME BLOCK NAME
 0 100 DOUBLE Scalar A

6 Signals and Parameters

6-158

See Also

More About
• “Troubleshoot Parameters Not Accessible by Name” on page 6-194
• “Troubleshoot Instrument Label Not Present” on page 6-196

 See Also

6-159

Tune Parameter Structures with Simulink Real-Time
Explorer

In this section...
“Create Parameter Structure” on page 6-160
“Replace Block Parameters with Parameter Structure Fields” on page 6-161
“Tune Parameters in a Parameter Structure” on page 6-162
“Save and Load Parameter Structure” on page 6-164

To reduce the number of workspace variables you must maintain and avoid name
conflicts, you can group closely related parameters into structures (see “Organize Related
Block Parameter Definitions in Structures” (Simulink)).

In this example, the initial model xpcosc has four parameters that among them
determine the shape of the output waveform.

Block Parameter Structure Field
Expression

Initial Value

Signal Generator Freq spkp.sg_freq 20
Gain Gain spkp.g_gain 1000^2
Gain1 Gain spkp.g1_gain 2*0.2*1000
Gain2 Gain spkp.g2_gain 1000^2

Create Parameter Structure
1 Open model xpcosc, and save a copy of the model to a working folder.
2 Open the Base Workspace in the Model Explorer. On the Modeling tab, click Base

Workspace. .
3 Click the Add Simulink Parameter button .
4 In the Name column, type the name spkp.
5 In the Storage class field, select ExportedGlobal.
6 In the Value field, type as one line:

struct('sg_freq',20, 'g2_gain',1000^2, ...
 'g1_gain',2*0.2*1000, 'g_gain',1000^2)

6 Signals and Parameters

6-160

The field values duplicate the literal values in the dialog boxes. To change the field
values, in row spkp, click the Value cell and click the Edit button .

7 Click Apply.
8 Save the model as ex_slrt_osc_struct. On the Simulation tab, from Save, click

Save As.

Replace Block Parameters with Parameter Structure Fields
1 In the Signal Generator block, replace the value of parameter Frequency with

spkp.sg_freq.

 Tune Parameter Structures with Simulink Real-Time Explorer

6-161

2 In the Gain block, replace the value of parameter Gain with spkp.g_gain.
3 In the Gain1 block, replace the value of parameter Gain with spkp.g1_gain.
4 In the Gain2 block, replace the value of parameter Gain with spkp.g2_gain.

Tune Parameters in a Parameter Structure
1 Build and download the model to your target computer.
2 Open Simulink Real-Time Explorer. In the Real-Time tab, click Prepare > SLRT

Explorer.
3 In the real-time application properties, set the Stop Time parameter to Inf.
4 Create and configure a host scope:

a In the Model Hierarchy node, right-click the model and open View Signals.
b Add a host scope ().
c Drag the signals Integrator1 and Signal Generator to the scope.
d Start the scope ().
e View the scope ().

5 In the Model Hierarchy node, right-click the model and open View Block
Parameters.

6 Open the Values text box for spkp(1).g1_gain.
7 Start the real-time application ().

6 Signals and Parameters

6-162

8 In the Values text box for spkp(1).g1_gain, change the value to 800, click outside

of the box, and click the Apply parameter value(s) changes button .

 Tune Parameter Structures with Simulink Real-Time Explorer

6-163

9 Stop the real-time application ().

Save and Load Parameter Structure
1 In Model Explorer, right-click row spkp.

6 Signals and Parameters

6-164

2 Click Export selected and save the variable as ex_slrt_osc_struct.mat.

To load the parameter structure when you open the model, add a load command to the
PreLoadFcn callback. To remove the parameter structure from the workspace when you
close the model, add a clear command to the CloseFcn callback. For more information,
see “Model Callbacks” (Simulink).

See Also

More About
• “Organize Related Block Parameter Definitions in Structures” (Simulink)
• “Display and Filter Hierarchical Signals and Parameters” on page 6-183
• “Model Callbacks” (Simulink)

 See Also

6-165

Tune Parameter Structures with MATLAB Language
In this section...
“Create Parameter Structure” on page 6-166
“Replace Block Parameters with Parameter Structure Fields” on page 6-167
“Tune Parameters in a Parameter Structure” on page 6-167
“Save and Load Parameter Structure” on page 6-169

To reduce the number of workspace variables you must maintain and avoid name
conflicts, you can group closely related parameters into structures (see “Organize Related
Block Parameter Definitions in Structures” (Simulink)).

In this example, the initial model xpcosc has four parameters that among them
determine the shape of the output waveform.

Block Parameter Structure Field
Expression

Initial Value

Signal Generator Freq spkp.sg_freq 20
Gain Gain spkp.g_gain 1000^2
Gain1 Gain spkp.g1_gain 2*0.2*1000
Gain2 Gain spkp.g2_gain 1000^2

Create Parameter Structure
1 Open model xpcosc and save a copy to a working folder.
2 To create a parameter structure, in the MATLAB Command Window, enter:

kp = struct(...
 'sg_freq', 20, ...
 'g2_gain',1000^2, ...
 'g1_gain', 2*0.2*1000, ...
 'g_gain',1000^2)

kp =

 struct with fields:

6 Signals and Parameters

6-166

 sg_freq: 20
 g2_gain: 1000000
 g1_gain: 400
 g_gain: 1000000

3 To make the parameter structure tunable on the target computer:

spkp = Simulink.Parameter(kp);
spkp.StorageClass = 'ExportedGlobal';
spkp.Value

ans =

 struct with fields:

 sg_freq: 20
 g2_gain: 1000000
 g1_gain: 400
 g_gain: 1000000

Replace Block Parameters with Parameter Structure Fields
1 In the Signal Generator block, replace the value of parameter Frequency with

spkp.sg_freq.
2 In the Gain block, replace the value of parameter Gain with spkp.g_gain.
3 In the Gain1 block, replace the value of parameter Gain with spkp.g1_gain.
4 In the Gain2 block, replace the value of parameter Gain with spkp.g2_gain.

Tune Parameters in a Parameter Structure
1 Build and download the model to the target computer.

rtwbuild('xpcosc');
tg = slrt('TargetPC1');
load(tg,'xpcosc');

2 Set stop time to inf.

tg.StopTime = inf;
3 Sweep the Gain value of the Gain1 block from 200 to 800.

start(tg);
for g = 200 : 200 : 800

 Tune Parameter Structures with MATLAB Language

6-167

 setparam(tg, 'spkp.g1_gain', g);
 pause(1);
end
stop(tg);

4 Plot the results.

time = tg.TimeLog;
output = tg.OutputLog;
plot(time, output);

6 Signals and Parameters

6-168

Save and Load Parameter Structure
To save the parameter structure spkp for later use, type:

save 'ex_slrt_osc_struct.mat', 'spkp'

 Tune Parameter Structures with MATLAB Language

6-169

To load the parameter structure when you open the model, add a load command to the
PreLoadFcn callback. To remove the parameter structure from the workspace when you
close the model, add a clear command to the CloseFcn callback. For more information,
see “Model Callbacks” (Simulink).

See Also

More About
• “Organize Related Block Parameter Definitions in Structures” (Simulink)
• “Model Callbacks” (Simulink)

6 Signals and Parameters

6-170

Define and Update Inport Data
In this section...
“File Dependencies” on page 6-171
“Map Inport to Use Square Wave” on page 6-171
“Update Inport to Use Sawtooth Wave” on page 6-174

You can create root-level input ports and use Root Inport Mapper to define input data. You
can update the input data without rebuilding the model by using MATLAB language.

File Dependencies
This procedure depends on the following files:

• ex_slrt_inport_osc (open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_inport_osc')))) — Damped oscillator that takes its input data from
input port In1 and sends its muxed output to output port Out1.

• ex_slrt_inport_square.mat (load(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_inport_square.mat')))) — One second of output from a Signal
Generator block that is configured to output a square wave.

• ex_slrt_inport_sawtooth.mat (load(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_inport_sawtooth.mat')))) — One second of output from a Signal
Generator block that is configured to output a sawtooth wave.

Before starting this procedure, navigate to a working folder.

Map Inport to Use Square Wave
1 Open model ex_slrt_inport_osc and save a copy to a working folder.
2 Load ex_slrt_inport_square.mat and assign square to a temporary workspace

variable for use with Root Inport Mapper.

waveform = square;
3 Double-click input port In1.
4 Clear Interpolate data, and then click Connect Input.
5 In Root Inport Mapper, click From Workspace and select variable waveform. Clear

the other variables.

 Define and Update Inport Data

6-171

6 In the Save to text box, enter a name such as
ex_slrt_inport_waveform_osc.mat, and then click OK.

7 Select map to model option Port order and, in the Options menu, select Update
Model.

8 Click Map to Model.
9 To update the model with the mapped input data, select scenario waveform, and then

click Mark for Simulation.

10 Click Save.

Save the scenario under a name such as
ex_slrt_inport_waveform_scenario.mldatx.

11 Close the Root Inport Mapper. In the In1 block parameters dialog box, click OK.

6 Signals and Parameters

6-172

12 To display the output of the Mux block with the Simulation Data Inspector, right-click
the output signal and select Log Selected Signals.

You can now save, build, download, and execute the real-time application. Display the
output with the Simulation Data Inspector.

 Define and Update Inport Data

6-173

Update Inport to Use Sawtooth Wave
You can update the inport data to use a different data file without rebuilding the real-time
application. The ex_slrt_inport_osc.mldatx file must be in the working folder.

1 Load ex_slrt_inport_sawtooth.mat, and then assign sawtooth to the
temporary variable that you used with Root Inport Mapper.

load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', ...
 'ex_slrt_inport_sawtooth.mat')));
waveform = sawtooth;

2 Create an application object.

app_object = SimulinkRealTime.Application('ex_slrt_inport_osc');
3 Update the application object.

updateRootLevelInportData(app_object);
4 Load the updated object to the target computer and execute it.

tg = slrt;
load(tg, 'ex_slrt_inport_osc');
start(tg);

5 Display the output with the Simulation Data Inspector.

6 Signals and Parameters

6-174

 Define and Update Inport Data

6-175

See Also

More About
• “Define and Update Inport Data with MATLAB Language” on page 6-177
• “Load Data to Root-Level Input Ports” (Simulink)
• “Inport Data Mapping Limitations” on page 6-182
• “Inspect Simulink® Real-Time™ Data with Simulation Data Inspector” on page 6-76

6 Signals and Parameters

6-176

Define and Update Inport Data with MATLAB Language

In this section...
“File Dependencies” on page 6-177
“Map Inport to Use Square Wave” on page 6-177
“Update Inport to Use Sawtooth Wave” on page 6-179

You can create root-level input ports and use the MATLAB language to define input data
and to update the input data without rebuilding the model.

File Dependencies
This procedure depends on the following files:

• ex_slrt_inport_osc (open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_inport_osc')))) — Damped oscillator that takes its input data from
input port In1 and sends its muxed output to output port Out1.

• ex_slrt_inport_square.mat (load(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_inport_square.mat')))) — One second of output from a Signal
Generator block that is configured to output a square wave.

• ex_slrt_inport_sawtooth.mat (load(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_inport_sawtooth.mat')))) — One second of output from a Signal
Generator block that is configured to output a sawtooth wave.

Before starting this procedure, navigate to a working folder.

Map Inport to Use Square Wave
1 Open ex_slrt_inport_osc.

model = docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',...
 'ex_slrt_inport_osc'));
open_system(model);
save_system(model,'H:\workdir\ex_slrt_inport_osc.slx');

2 Load ex_slrt_inport_square.mat, and then assign square to a temporary
workspace variable.

 Define and Update Inport Data with MATLAB Language

6-177

load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', ...
 'ex_slrt_inport_square.mat')));
waveform = square;

3 Open ex_slrt_inport_osc/In1

inport = [model '/In1'];
load_system(inport);

4 Turn off inport data interpolation.

set_param(inport,'Interpolate','off');
5 Set external input variable.

set_param(model,'ExternalInput','waveform');
6 Load external input data.

set_param(model,'LoadExternalInput','on');
7 You can now build, download, and execute the real-time application.

rtwbuild(model);
tg = slrt('TargetPC1');
load(tg,model);
start(tg);

8 Plot the output.

plot(tg.TimeLog,tg.OutputLog);

6 Signals and Parameters

6-178

Update Inport to Use Sawtooth Wave
You can update the inport data to use a different data file without rebuilding the real-time
application. The ex_slrt_inport_osc.mldatx file must be in the working folder.

1 Load ex_slrt_inport_sawtooth.mat, and then assign sawtooth to the
temporary variable that you used with Root Inport Mapper.

 Define and Update Inport Data with MATLAB Language

6-179

load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', ...
 'ex_slrt_inport_sawtooth.mat')));
waveform = sawtooth;

2 Create an application object.

app_object = SimulinkRealTime.Application('ex_slrt_inport_osc');
3 Update the application object.

updateRootLevelInportData(app_object);
4 Download the updated object to the target computer and execute it.

tg = slrt;
load(tg, 'ex_slrt_inport_osc');
start(tg);

5 Plot the output.

plot(tg.TimeLog,tg.OutputLog);

6 Signals and Parameters

6-180

See Also

More About
• “Define and Update Inport Data” on page 6-171
• “Load Data to Root-Level Input Ports” (Simulink)
• “Inport Data Mapping Limitations” on page 6-182
• “Inspect Simulink® Real-Time™ Data with Simulation Data Inspector” on page 6-76

 See Also

6-181

Inport Data Mapping Limitations
In Simulink Real-Time, you cannot:

• Create data at run time for each time step by using the input u = UT(t) for MATLAB
functions or expressions.

• Import complex values and asynchronous function-call signals into top-level input
ports.

• Import signals of type Stateflow.SimulationData.State into top-level input
ports.

See Also

More About
• “Define and Update Inport Data” on page 6-171
• “Load Data to Root-Level Input Ports” (Simulink)

6 Signals and Parameters

6-182

Display and Filter Hierarchical Signals and Parameters
In this section...
“Hierarchical Display” on page 6-183
“Filtered Display” on page 6-184
“Grouped Display” on page 6-186

In Simulink Real-Time Explorer, the default view of the signal and parameter lists shows
the signals and parameters only at the level that you selected. You can display signals and
parameters for the current level and below and filter the display to show only the items
that you are interested in.

Hierarchical Display
To show signals and parameters from the current level and below, navigate to the
hierarchical level that you are interested in. Click the Contents of button (on the
toolbar).

The contents of the top level of ex_slrt_sf_car are shown in the figure.

 Display and Filter Hierarchical Signals and Parameters

6-183

Filtered Display
To restrict display to signals or parameters with a particular characteristic, use the Filter
text box that is on the toolbar. If you display only one level, the filter applies only to that
level.

Explorer supports filtering by values in the following columns:

6 Signals and Parameters

6-184

• Signals — Signal Name, Signal Label, Full Path
• Parameters — Name, Block Name, Full Path

For example, to restrict the display of signals and parameters to the shift_logic
subsystem, select column Signal Name. Type shift_logic into the Filter text box.

 Display and Filter Hierarchical Signals and Parameters

6-185

Grouped Display
To group signals and parameters by columns, right-click the column head and select
Group By This Column. To remove the grouped display, right-click the column head and
select Remove Grouping.

Explorer supports grouping by the following columns:

• Signals — Signal Name, Signal Label, Full Path, Test Point, Dimensions
• Parameters — Name, Block Name, Full Path, Dimensions

For example, to group signals by name, right-click the Signal Name column and select
Group By This Column. To group parameters by name, right-click the Name column
and select Group By This Column.

6 Signals and Parameters

6-186

 Display and Filter Hierarchical Signals and Parameters

6-187

Display and Filter Hierarchical Signals and Parameters
(tech preview)

In Simulink Real-Time Target Computer Explorer (tech preview), the Signal tab and the
Parameters tab display the signals and parameters only at the level of the hierarchy that
you selected. You can display signals and parameters for the current hierarchy node and
below. You can filter the display to show only the items in which you are interested.

Use the steps in this example in MATLAB and Simulink to build and deploy the real-time
application sf_car_slrt. In the MATLAB Command Window type:

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','sf_car_slrt'));
rtwbuild('sf_car_slrt');
tg = slrt('TargetPC1');

To explore the real-time application, open the Simulink Real-Time Target Computer
Explorer tech preview, connect to the target computer, and load the real-time application.

1 Open the Target Computer Explorer (tech preview). In the Command Window, type:

SimulinkRealTime.prototype.Explorer
2 To connect to the real-time application, click Connect.
3 Click Load Application. Browse to and select the sf_car_slrt.mldatx file.
4 In the hierarchical display, click the sf_car_slrt node.

Hierarchical Display
To show signals and parameters from the current hierarchical level and below it, navigate
to the hierarchical level in which you are interested.

The contents of the top level of real-time application sf_car_slrt appear in the figure.

6 Signals and Parameters

6-188

Filtered Display
To restrict the display to signals or parameters with a particular characteristic, use the
filter text box. This box appears in the figure, circled in red. If you display only one level,
the filter applies only to that level.

This example shows how to restrict the display of signals and parameters to the
transmission subsystem by using the filter text transmission. The filter applies to
the Block Path and the Signal Name.

 Display and Filter Hierarchical Signals and Parameters (tech preview)

6-189

Grouped Display
To group signals to stream to the Simulation Data Inspector, select the signal and click

Add selected signals to signal group . To remove signals from the signal group,

click Remove selected signals from signal group .

This example filters the hierarchy by using filter text speed and selects the vehicle
speed and transmission speed signals to stream to the Simulation Data Inspector.

6 Signals and Parameters

6-190

See Also
SimulinkRealTime.prototype.Explorer

More About
• Simulink Real-Time Target Computer Explorer tech preview

 See Also

6-191

Troubleshoot Signals Not Accessible by Name
I cannot monitor, trace, or log some signal types in the real-time application.

What This Issue Means
You cannot monitor, trace, or log by name these types of signals in the real-time
application:

• Virtual or bus signals (including signals from bus creator blocks and virtual blocks).
For example, assume that you connect the output of a Mux block (a virtual block) to a
real-time Scope block. The Scope block displays the names of the Mux input signals
rather than the names of the Mux output signals.

• Signals that Simulink optimizes away after you set the Signal storage reuse or
Block reduction configuration parameters.

The output of a block that was optimized away is replaced with the corresponding
input signal to the block. To access these signals, make them test points.

• Blocks that buffer their input signals to make them contiguous. Examples include the
To Workspace block and some S-function blocks. Such blocks generate a signal name
associated with the generated block.

If you connect a signal to the input port of such a block and to a real-time Scope block,
the Scope block cannot access the signal. To access the signal, add a unit Gain block (a
Gain block with gain 1) before the model input to the Scope block.

• Signals of complex or multiword data types.
• If a block name consists only of spaces, Simulink Real-Time Explorer does not display

a node for signals from that block. To reference such a block:

• Provide an alphanumeric name for the block.
• Rebuild and download the model to the target computer.
• Reconnect the MATLAB session to the target computer.

Try This Workaround
Check the signal types for the issues described in “What This Issue Means” on page 6-
192.

6 Signals and Parameters

6-192

See Also
Gain

More About
• “Nonvirtual and Virtual Blocks” (Simulink)
• “Virtual Signals” (Simulink)
• “Signal storage reuse” (Simulink Coder)
• “Block reduction” (Simulink)
• “Troubleshoot Parameters Not Accessible by Name” on page 6-194
• “Internationalization Issues” on page 6-198

 See Also

6-193

Troubleshoot Parameters Not Accessible by Name
I cannot observe or tune some parameters in the real-time application.

What This Issue Means
Reasons that you cannot observe or tune some parameters in the real-time application
are:

• Simulink Real-Time does not support parameters of multiword data types.
• During execution, you cannot tune parameters that change the model structure, for

example by adding a port. To change these parameters, you must stop execution,
change the parameter, and rebuild the real-time application.

Try This Workaround
Check the parameters for the issues described in “What This Issue Means” on page 6-194.

See Also

More About
• “Troubleshoot Signals Not Accessible by Name” on page 6-192
• “Internationalization Issues” on page 6-198

6 Signals and Parameters

6-194

Troubleshoot Instance-Specific Parameters Not Saved
The saveparamset function does not save instance-specific parameters and parameters
with custom storage classes to a MAT file for loading with the loadparamset function.
When I use the saveparamset function on a model that contains only instance-specific
parameters, I get an error message.

Error using SimulinkRealTime.target/saveparamset
TargetPC1: Error writing file

What This Issue Means
The saveparamset function saves parameters that appear in the rtP structure of the
model. Instance-specific parameters and parameters with custom storage classes are
global variables that are not by default represented in the rtP structure.

Try This Workaround
You can use the saveparamset function to save parameter sets from models that include
instance-specific parameters or parameters with custom storage classes. But, these
parameters do not appear in the saved parameter set.

See Also

More About
• “Save and Reload Parameters with MATLAB Language” on page 6-145

 Troubleshoot Instance-Specific Parameters Not Saved

6-195

Troubleshoot Instrument Label Not Present
I get an instrument label error when working with instrumentation panels in Simulink
Real-Time Explorer.

'The given key was not present in the dictionary'

What This Issue Means
This error indicates that one or more labels added to instrument panels in Simulink Real-
Time Explorer could have a corrupted name.

This label issue causes errors when opening and closing the instrument panel.

Try This Workaround
Resolve the errors for corrupted labels by renaming instruments. Simulink Real-Time
Explorer names labels in the form Label<num>, where <num> is an integer.

The numbering starts at "1" and increments by one each time a new label is added.

Occasionally, a label may receive a name with a very large value for <num> (for example,
Label2147483648).

Use Simulink Real-Time Explorer to find these labels with large values for <num> and
rename them to avoid errors.

See Also
Instrument Properties

More About
• “Instrumentation for Real-Time Applications”

6 Signals and Parameters

6-196

Troubleshoot Internationalization Issues
I want to identify signal and parameter names through the target computer keyboard
when the names contain Unicode characters from a locale other than English.

What This Issue Means
Simulink Real-Time supports the internationalization because the products that it works
with support internationalization. These products include Simulink, Simulink Coder, and
Embedded Coder®. Signal and parameter names that include Unicode characters are
displayed as expected in Simulink Real-Time Explorer and at the MATLAB command line.
When you use host scopes to observe signals, the non-ASCII signal names are displayed
with the expected characters.

The Simulink Real-Time kernel does not support international (non-ASCII) characters. It
generates messages in English by using ASCII characters. When interacting with the
kernel through the target computer keyboard, you identify signals and parameters by
numeric ID, not by names.

Try This Workaround
For more information, see “Internationalization Issues” on page 6-198.

See Also

More About
• “Internationalization Issues” on page 6-198

External Websites
• https://www.speedgoat.com/support

 Troubleshoot Internationalization Issues

6-197

https://www.speedgoat.com/support

Internationalization Issues
Simulink Real-Time inherits the internationalization support of the products it depends
upon: Simulink, Simulink Coder, and Embedded Coder. Signal and parameter names that
include Unicode characters are displayed as expected in Simulink Real-Time Explorer and
at the MATLAB command line. In particular, when you use host scopes to observe signals,
the non-ASCII signal names are displayed as expected.

Third-party code, such as parsers for vendor configuration files, sometimes does not
support cross-locale, cross-platform internationalization. For such code, files and folders
must be given locale-specific names. For example, when parsing a configuration file on an
English-locale machine, name the file and enclosing folder with English-locale-specific
names.

The Simulink Real-Time kernel does not support international (non-ASCII) characters. It
generates messages in English using ASCII characters. When interacting with the kernel
through the target computer keyboard, you identify signals and parameters by numeric
ID, not by names.

When you use target scopes to observe signals, the kernel replaces a signal label that
includes non-ASCII characters with the numeric ID. It replaces each non-ASCII character
in the block path (hierarchical signal name) with the character ?.

For example, assume that the signal with ID 1 appears in an English-language and a
Japanese-language version of the same model. In the English-language version, the signal
label is input1 and the block path is block1/block2. In the Japanese-language version,
the signal label is 入力 1 and the block path is ブロック 1/ブロック 2.

• In single scope mode, the numeric portion of the screen contains this character vector
for the English-language version:

input1: block1/block2

It contains this character vector for the Japanese-language version:

1: ????1/????2
• In multiscope mode, the signal label above the scope contains this character vector for

the English-language version:

input1

It contains this character vector for the Japanese-language version:

6 Signals and Parameters

6-198

1

See Also

More About
• “Troubleshoot Signals Not Accessible by Name” on page 6-192
• “Troubleshoot Parameters Not Accessible by Name” on page 6-194
• “Troubleshoot Instrument Label Not Present” on page 6-196

 See Also

6-199

Execution Modes

7

Execution Modes
The Simulink Real-Time kernel has three mutually exclusive execution modes. You can
execute the real-time application in one non-real-time mode and in two real-time modes.

• Interrupt mode — To use this real-time mode, on the Simulink Real-Time Options
pane in the Configuration Parameters dialog box, set Execution mode to Real-Time.

In this mode, the scheduler implements real-time single-tasking and multitasking
execution of single-rate or multirate systems, including asynchronous events
(interrupts). This implementation allows you to interact with the target computer
while the real-time application is executing at high sample rates.

• Polling mode — To use this real-time mode:

1 Use multicore target computer hardware.
2 In Simulink Real-Time Explorer, check that the Multicore CPU target setting is

set to 'on' for the target computer that you intend to use.
3 On the Simulink Real-Time Options pane in the Configuration Parameters

dialog box, set Execution mode to Real-Time.
4 Enable polling by setting the TLCOptions setting -axpcCPUClockPoll to a

nonzero value.

In this mode, the kernel executes real-time applications at sample times close to the
limit of the CPU. Using polling mode with high-speed and low-latency I/O boards and
drivers allows you to achieve real-time application sample times that you cannot
achieve using interrupt mode. Because polling mode disables interrupts on the
processor core where the model runs, it imposes restrictions on the model
architecture and on target communication.

• Freerun mode — To use this non-real-time mode, in the Configuration Parameters
dialog box:

1 On the Simulink Real-Time Options pane, set Execution mode to Freerun.
2 On the Solver pane, clear the check box for Treat each discrete rate as a

separate task.

In this mode, the real-time application thread does not wait for the timer. The kernel
runs the application as fast as possible. If the real-time application has conditional
code, the time between each execution can vary. Multirate models cannot be executed
in Freerun execution mode.

7 Execution Modes

7-2

Interrupt Mode
When you set Execution mode to Real-Time on the Simulink Real-Time Options
pane in the Configuration Parameters dialog box, interrupt mode is the real-time
execution mode set by default. This mode provides the greatest flexibility. Choose this
mode for real-time applications that execute at the given base sample time without
overloading the CPU.

In interrupt mode, the scheduler implements real-time single-tasking and multitasking
execution of single-rate or multirate systems, including asynchronous events (interrupts).
Also, background tasks like target communication or updating the target display run in
parallel with sample-time-based model tasks. This implementation allows you to interact
with the target system while the real-time application is executing at high sample rates.
Interaction is made possible by an interrupt-driven real-time scheduler responsible for
executing the various tasks according to their priority. The base sample time task can
interrupt other tasks (larger sample time tasks or background tasks). Execution of the
interrupted tasks resumes when the base sample time task completes operation. This
capability gives a quasiparallel priority execution scheme.

In interrupt mode, the kernel is close to optimal for executing code on a PC-compatible
system. However, using interrupt mode introduces an overhead, or latency, that reduces
the minimal possible base sample time. The overhead is the sum of various factors related
to the interrupt-driven execution scheme, such as interrupt controller latency, interrupt
handler latency, and CPU latency. The overhead is referred to as overall interrupt latency.

The overall latency of interrupt mode is equivalent to a Simulink model containing a
hundred nontrivial blocks. At least 5% of headroom is required because the CPU must
also service lower priority tasks. This requirement can cause additional cache misses and
therefore nonoptimal execution speed.

Polling Mode
Polling mode for the kernel is designed to execute real-time applications at sample times
close to the limit of the CPU. Polling mode with high-speed and low-latency I/O boards and
drivers allows you to achieve smaller sample times for real-time applications. You cannot
achieve these smaller sample times using the interrupt mode of the Simulink Real-Time
software.

Polling mode has two main uses:

 Execution Modes

7-3

• Control systems — Control system models of average model size and I/O complexity
that are executed at small sample times (Ts = 10–50 µs).

• DSP systems — Sample-based DSP system models of average model size and I/O
complexity that are executed at high sample rates (Fs = 20–100 kHz). DSP models
mainly process audio and speech data.

Polling mode for the kernel does not have the latency that interrupt mode does. It is
sometimes seen as a “primitive” or “brute force” real-time execution scheme. When a
real-time application executing in interrupt mode at a given sample time overloads the
CPU, switching to polling mode is often the only alternative.

In interrupt mode, when a CPU has finished executing the real-time code, it cedes the rest
of its execution time to the operating system. The operating system can use this time to
execute other tasks, such as background or I/O tasks. When the next execution step is
scheduled, the timer generates an interrupt, and Simulink Real-Time executes the next
step.

In polling mode, however, when the CPU has finished executing the real-time code, the
CPU does not cede time to other tasks. Instead, it does not do anything besides checking
(polling) the time value to determine whether it is time to run the next execution step.
Once this time arrives, it executes the next step and the process continues.

The latency associated with interrupts is not incurred because no timer interrupts are
involved on this core. However, one core of the target computer is occupied with running
the base rate, irrespective of how long it takes to run the actual real-time task.

The polling execution scheme does not depend on interrupt sources to notify the code to
continue calculating the next model step. The base rate of the real-time code is executed
on one core of the multicore processor, timed by the polling loop. Background tasks and
model tasks other than the base rate task are executed on the other cores. For efficiency,
put only the most critical code into the base rate task.

If you use Simulink Real-Time concurrent execution to execute your model, you can have
multiple base rate tasks. The CPU scheduler arbitrarily selects one of these tasks to run
in the polling loop.

Before considering polling mode, do the following:

• Optimize the model execution speed — To find possible speed optimizations using
alternative blocks, use Performance Advisor or the profiler. If the model contains
continuous states, discretizing these states reduces model complexity significantly. You

7 Execution Modes

7-4

can avoid a costly fixed-step integration algorithm. If continuous states cannot be
discretized, use the integration algorithm with the lowest order that still produces the
required numeric results.

• Use the fastest available CPU — Use the CPU with the highest clock rate available for
a given target computer form factor. For the desktop form factor, use a CPU with a
clock rate above 3 GHz. For a model of a mobile system (e.g., PC/104 form factor), use
a CPU with a clock rate above 1 GHz.

• Use the lowest latency I/O modules and drivers available — Many real-time
applications communicate with I/O modules over a PCI bus. Each register access
introduces a comparably high latency time. Using the lowest latency I/O modules and
drivers available is crucial.

• Consider running less critical code at a slower rate, taking advantage of the
multitasking capabilities of Simulink Real-Time.

Set Polling Mode

Polling mode is an alternative to the default interrupt mode of the kernel. The kernel on
the bootable media created by the UI allows running the real-time application in either
mode without using another boot disk.

By default, the real-time application executes in interrupt mode. To switch to polling
mode, you enable polling using a TLCOptions setting.

The following example uses xpcosc.

1 Open Simulink Real-Time Explorer.
2 Select the Properties pane for the target computer that you intend to use.
3 In the Target settings section, check that the Multicore CPU parameter is

selected.
4 Open model xpcosc.
5 In the Configuration Parameters dialog box, on the Simulink Real-Time Options

pane, set Execution mode to Real-Time.
6 In the Command Window, type:

set_param('xpcosc','TLCOptions', '-axpcCPUClockPoll=1')

7 Build and download the real-time application.

 Execution Modes

7-5

After you have downloaded the real-time application, the target display shows the
execution mode. If you want to execute the real-time application in interrupt mode again,
either remove the setting or assign 0 to the setting:

set_param('xpcosc','TLCOptions','')
set_param('xpcosc','TLCOptions','-axpcCPUClockPoll=0')

Rebuild and download the real-time application.

Restrictions on Multicore Processors

Polling mode runs only on a multicore processor target computer with multicore
processing enabled. For more information, see “Multicore Processor Configuration” on
page 10-10.

Polling mode disables interrupts on the core where the base rate task is running.
Background tasks and model tasks other than the base rate task are inactive on this core.
Tasks for Ethernet communication, target display updates, and UDP transfers run on the
other cores. Interrupts are still enabled on cores other than the one running the polling
task.

See Also
“TLC Command-Line Options” | SimulinkRealTime.utils.minimumSampleTime |
Target Settings

More About
• “Set Configuration Parameters”
• “Execution mode”
• “Performance Optimization”
• “Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 25-

5

7 Execution Modes

7-6

Real-Time Application Execution

7

Execution with User Interface
Models

You can use the Simulink interface to create a custom user interface (UI) for your real-
time application. First, create a user interface model with the Simulink interface. Then,
add-on products like Simulink 3D Animation™ or Altia® Design (a third-party product).

8

Simulink Real-Time Interface Blocks to Simulink Models
In this section...
“Simulink User Interface Model” on page 8-2
“Creating a Custom Graphical Interface” on page 8-3
“To Target Block” on page 8-4
“From Target Block” on page 8-6
“Creating a Real-Time Application Model” on page 8-8
“Marking Block Parameters” on page 8-8
“Marking Block Signals” on page 8-10

Simulink User Interface Model
A user interface model is a Simulink model containing Simulink blocks from add-on
products and interface blocks from the Simulink Real-Time block library. This user
interface model can connect to a custom graphical interface using Simulink 3D Animation
or Altia products. The user interface model runs on the development computer and
communicates with your real-time application running on the target computer using To
Target and From Target blocks.

The user interface allows you to change parameters by downloading them to the target
computer, and to visualize signals by uploading data to the development computer.

Simulink 3D Animation — The Simulink 3D Animation product enables you to display a
Simulink user interface model in 3-D. It provides Simulink blocks that communicate with
Simulink Real-Time interface blocks. These blocks then communicate to a graphical
interface. This graphical interface is a virtual reality modeling language (VRML) world
displayed with a web browser using a VRML plugin.

Altia Design — Altia also provides Simulink blocks that communicate with Simulink Real-
Time interface blocks. These blocks then communicate with Altia's graphical interface or
with a web browser using the Altia ProtoPlay plugin.

8 Execution with User Interface Models

8-2

Creating a Custom Graphical Interface
The Simulink Real-Time block library provides Simulink interface blocks to connect
graphical interface elements to your real-time application. The steps for creating your
own custom user interface are:

 Simulink Real-Time Interface Blocks to Simulink Models

8-3

1 In the Simulink real-time application model, decide which block parameters and
block signals that you want to access through user interface control and display
devices.

2 Tag the block parameters in the Simulink model that you want to be connected to a
control device. See “Marking Block Parameters” on page 8-8.

3 Tag the signals in Simulink model that you want to be connected to a display device.
See “Marking Block Signals” on page 8-10.

4 In the MATLAB interface, run the function
SimulinkRealTime.utils.createInstrumentationModel to create the user
interface template model. This function generates a new Simulink model containing
only the Simulink Real-Time interface blocks (To Target and From Target) defined by
the tagged block parameters and block signals in the real-time application model.

5 To the user interface template model, add Simulink interface blocks from add-on
products (Simulink 3D Animation, Altia Design).

• You can connect Altia blocks to the Simulink Real-Time To PC Target interface
blocks. Connect the To Target blocks on the left to control devices.

• You can connect Altia and Simulink 3D Animation blocks to the Simulink Real-
Time From Target interface blocks. Connect the From Target blocks on the right
to the display devices.

You can position these blocks to your liking.
6 Start both the real-time application and the Simulink user interface model that

represents the application.

To Target Block
This block behaves as a sink and usually receives its input data from a control device. The
purpose of this block is to write a new value to a specific parameter in the real-time
application.

8 Execution with User Interface Models

8-4

This block is implemented as a MATLAB S-function. The block only changes a parameter
on the real-time application when the input value differs from the value that existed at the
last time step. This block uses the parameter downloading feature of the Simulink Real-
Time command-line interface. This block is available from the slrtlib/Displays and
Logging block sublibrary. See To Target for further configuration details.

 Simulink Real-Time Interface Blocks to Simulink Models

8-5

Note The use of To Target blocks requires a connection between the development and
target computers. Opening a model that contains these blocks or copying them to another
model takes longer than normal without a connection between the development and
target computers.

From Target Block
This block behaves like a source. Typically, you connect its output to the input of a display
device.

8 Execution with User Interface Models

8-6

Because only one numeric value per signal is uploaded during a time step, the number of
samples of a scope object is set to 1. The block uses the capability of the Simulink Real-
Time command-line interface and is implemented as a MATLAB S-function. This block is
available from the slrtlib/Displays and Logging sublibrary. See From Target for
further configuration details.

 Simulink Real-Time Interface Blocks to Simulink Models

8-7

Note The use of From Target blocks requires a connection between the development and
target computers. Opening a model that contains these blocks or copying them to another
model takes longer than normal without a connection between the development and
target computers.

Creating a Real-Time Application Model
A real-time application model is a Simulink model that describes your physical system, a
controller, and its behavior. You use this model to create a real-time application and to
specify the parameters and signals that you want to connect to a custom graphical
interface.

See “Marking Block Parameters” on page 8-8 and “Marking Block Signals” on page 8-
10 for descriptions of how to mark block properties and block signals.

Marking Block Parameters
Tagging parameters in your Simulink model allows the function
SimulinkRealTime.utils.createInstrumentationModel to create To Target
interface blocks. These interface blocks contain the parameters you connect to control
devices in your user interface model.

After you create a Simulink model, you can mark the block parameters. This procedure
uses the model xpctank as an example.

Tip The xpctank model blocks and signals contain placeholder tags illustrating the
syntax. Replace these tags with your new tags or add the new tags using the multiple
label syntax.

1 Open a Simulink model. For example, in the MATLAB Command Window, type

xpctank
2 Point to a Simulink block, and then right-click.
3 From the menu, click Properties.

A Block Properties dialog box opens.
4 In the Description box, delete the existing tag and enter a tag to the parameters for

this block.

8 Execution with User Interface Models

8-8

For example, the SetPoint block is a constant with a single parameter that specifies
the level of water in the tank. Enter the tag:

xPCTag(1)=water_level;

The tag has the following syntax:

xPCTag(1, . . . index_n)= label_1 . . . label_n;

For single dimension ports, the following syntax is also valid:

xPCTag=label;

index_n -- Index of a block parameter. Begin numbering parameters with an index
of 1.

label_n -- Name for a block parameter that is connected to a To Target block in
the user interface model. Separate the labels with a space, not a comma.

label_1 . . . label_n must consist of the same identifiers as C/C++ used to
name functions, variables, and so forth. Do not use names like -foo.

5 Repeat steps 1 through 3 for the remaining parameters you want to tag.

For example, for the Controller block, enter the tag:

xPCTag(1,2,3)=upper_water_level lower_water_level
 pump_flowrate;

For the PumpSwitch and ValveSwitch blocks, enter the following tags respectively:

xPCTag(2)=pump_switch;
xPCTag(1)=drain_valve;

To create the To Target blocks in a user interface model for a block with four
properties, use the following syntax:

xPCTag(1,2,3,4)=label_1 label_2 label_3 label_4;

To create the To Target blocks for the second and fourth properties in a block with at
least four properties, use the following syntax:

xPCTag(2,4)=label_1 label_2;
6 On the Simulation tab, from Save, click Save as. Enter a file name for your model.

For example, enter

 Simulink Real-Time Interface Blocks to Simulink Models

8-9

xpctank1

If you have not already marked block signals, your next task is to mark block signals, and
then to create the user interface template model. See “Marking Block Signals” on page 8-
10 and “Creating a Custom Graphical Interface” on page 8-3.

Marking Block Signals
Tagging signals in your Simulink model allows the function
SimulinkRealTime.utils.createInstrumentationModel to create From Target
interface blocks. These interface blocks contain the signals you connect to display devices
in your user interface model.

After you create a Simulink model, you can mark the block signals. This procedure uses
the model xpctank1 (or xpctank) as an example. See “Creating a Real-Time Application
Model” on page 8-8.

Tip The xpctank model blocks and signals can contain placeholder tags illustrating the
syntax. Replace these tags with your new tags or add the new tags using the multiple
label syntax.

You cannot tag signals on the output ports of virtual blocks, such as Subsystem and Mux
blocks. Also, you cannot tag signals on software-triggered signal output ports.

1 Open a Simulink model. For example, in the MATLAB Command Window, type:

xpctank

or

xpctank1
2 Point to a Simulink signal line, and then right-click.
3 From the menu, click Properties.

A Signal Properties dialog box opens.
4 Select the Documentation tab.
5 In the Description box, enter a tag to the signals for this line.

8 Execution with User Interface Models

8-10

For example, the block labeled TankLevel is an integrator with a single signal that
indicates the level of water in the tank. Replace the existing tag with the tag:

xPCTag(1)=water_level;

The tag has the following format syntax:

xPCTag(1, . . . index_n)=label_1 . . . label_n;

For single dimension ports, the following syntax is also valid:

XPCTag=label:

• index_n — Index of a signal within a vector signal line. Begin numbering signals
with an index of 1.

• label_n — Name for a signal that is connected to a From Target block in the
user interface model. Separate the labels with a space, not a comma.

label_1 . . . label_n must consist of the same identifiers as C/C++ uses to
name functions, variables, and so forth. Do not use names like -foo.

To create the From Target blocks in a user interface model for a signal line with four
signals (port dimension of 4), use the following syntax:

xPCTag(1,2,3,4)=label_1 label_2 label_3 label_4;

To create the From Target blocks for the second and fourth signals in a signal line
with at least four signals, use the following syntax:

xPCTag(2,4)=label_1 label_2;

Note Only tag signals from nonvirtual blocks. Virtual blocks are only graphical aids
(see “Nonvirtual and Virtual Blocks” (Simulink)). For example, if your model
combines two signals into the inputs of a Mux block, do not tag the output signal
from the Mux block. Instead, tag the source signal from the output of the originating
nonvirtual block.

6 On the Simulation tab, from Save, click Save as. Enter a file name for your model.
For example, enter

xpc_tank1

If you have not already marked block parameters, your next task is to mark them. See
“Marking Block Parameters” on page 8-8. If you have already marked block signals,

 Simulink Real-Time Interface Blocks to Simulink Models

8-11

return to “Creating a Custom Graphical Interface” on page 8-3 for additional guidance on
creating a user interface template model.

8 Execution with User Interface Models

8-12

Execution Using the Target
Computer Command Line

9

Control Real-Time Application at Target Computer
Command Line

The Simulink Real-Time software provides a set of commands that you can use to interact
with the real-time application after it has been loaded to the target computer. Using these
commands, you can start and stop execution, configure and control scopes, and tune
parameters.

These commands are useful with standalone real-time applications that are not connected
to the development computer. You type commands directly from a keyboard attached to
the target computer. As you start to type, a command window appears on the target
computer screen.

The target computer commands are case-sensitive, but the arguments are not. For more
information, see “Target Computer Commands”.

To read the target computer console log, call
SimulinkRealTime.utils.getConsoleLog.

Trace Signals at Target Computer Command Line
After you have built and downloaded a real-time application to the target computer, you
can use target computer commands to create and configure scopes.

To add signals to a scope, you must specify the signals by signal number. For more
information, see “Find Signal and Parameter Indexes” on page 9-5.

1 To start the real-time application, in the command line, type:

start
2 To add a target scope (scope 2), type:

addscope 2

The Simulink Real-Time software adds another scope graphic to the target computer
monitor. The command window displays a message to indicate that the new scope has
registered.

Scope 2, created, type is target
3 To add a signal (0) to the new scope, type:

9 Execution Using the Target Computer Command Line

9-2

addsignal 2=0

The command window displays a message to indicate that the new signal has
registered.

Scope 2, signal 0 added

You can add more signals to the scope.
4 To start scope 2, type:

startscope 2

The target scope 2 starts and displays the signals you added in the default format
(graphical).

If you add a target scope from the target computer, you must start that scope
manually. If a target scope is in the model, starting the real-time application starts
that scope automatically.

5 To collapse scope 2 into an icon, type:

hide Scope 2
6 To expand scope 2 from an icon, type:

show Scope 2
7 To check the value of signal 0, type:

s0

The command window displays a message to show the value of signal 0.

S0 has value 5.1851
8 To stop scope 2, type:

stopscope 2
9 To change the number of samples (to 1000) to acquire in scope 2, type:

numsamples 2=1000

Stop the scope before changing a scope parameter.
10 To start scope 2, type:

startscope 2

 Control Real-Time Application at Target Computer Command Line

9-3

The target scope 2 starts and displays the signal values with the updated sample
count.

11 To stop scope 2, type:

stopscope 2

12 To stop the real-time application, type:

stop

Tune Parameters at Target Computer Command Line
After you have built and downloaded a real-time application to the target computer, you
can use target computer commands to tune parameters.

To tune parameters, you must specify them by parameter number. For more information,
see “Find Signal and Parameter Indexes” on page 9-5.

1 To check the frequency of the signal generator (parameter 6) of the model xpcosc,
type:

p6

The command window displays a message to indicate that the new parameter has
registered.

p[6] is set to 20.00000

2 To change the frequency of the signal generator, type:

setpar 6=30

The command window displays a message to indicate that the new parameter has
registered.

p[6] is set to 30.00000

The target computer command setpar does not work for vector parameters.
3 To change the stop time to 1000, type:

stoptime = 1000

9 Execution Using the Target Computer Command Line

9-4

The parameter changes are made to the real-time application but not to the target
object. When you type a Simulink Real-Time command in the MATLAB Command
Window, the target computer returns the current properties of the target object.

Alias Commands at Target Computer Command Line
You can use target computer command-line variables to tag (or alias) unfamiliar
commands, parameter indexes, and signal indexes with more descriptive names.

1 To create the aliases on and off for a parameter (7) that controls a motor, type:

setvar on = p7 = 1
setvar off = p7 = 0

The target computer command window is activated when you start to type, and a
command line opens.

2 To run a command sequence, type the variable name. For example, to turn on the
motor, type:

on

The parameter P7 is changed to 1, and the motor turns on.

Find Signal and Parameter Indexes
To find signal and parameter indexes using MATLAB language:

1 Build and download the model to the target computer.
2 At the Command Line, type:

tg = slrt

Target: TargetPC1
 Connected = Yes
 Application = xpcosc
.
.
.
 Scopes = No Scopes defined
 NumSignals = 7
 ShowSignals = off

 Control Real-Time Application at Target Computer Command Line

9-5

 NumParameters = 7
 ShowParameters = off

3 To display signal numbers, type:

tg.ShowSignals='on'

Target: TargetPC1
 Connected = Yes
 Application = xpcosc
.
.
.
 Scopes = No Scopes defined
 NumSignals = 7
 ShowSignals = on
 Signals = INDEX VALUE BLOCK NAME . . .
 0 0.000000 Gain . . .
 1 0.000000 Gain1 . . .
 2 0.000000 Gain2 . . .
 3 0.000000 Integrator . . .
 4 0.000000 Integrator1 . . .
 5 0.000000 Signal Generator . . .
 6 0.000000 Sum . . .

 NumParameters = 7
 ShowParameters = off

Use the Signals INDEX number in target computer commands such as addsignal.
4 To display parameter numbers, type:

tg.ShowParameters='on'

Target: TargetPC1
 Connected = Yes
 Application = xpcosc
.
.
.
 NumParameters = 7
 ShowParameters = on
 Parameters = INDEX VALUE . . . PARAMETER NAME . . .
 0 1000000 . . . Gain . . .
 1 400 . . . Gain . . .

9 Execution Using the Target Computer Command Line

9-6

 2 1000000 . . . Gain . . .
 3 0 . . . InitialCondition . . .
 4 0 . . . InitialCondition . . .
 5 4 . . . Amplitude . . .
 6 20 . . . Frequency . . .

Use the Parameters INDEX number in target computer commands such as setpar.

See Also
SimulinkRealTime.utils.getConsoleLog

Related Examples
• “Target Computer Commands”

 See Also

9-7

Tuning Performance

• “Improve Performance of Multirate Model” on page 10-2
• “Multicore Processor Configuration” on page 10-10
• “Limits on Sample Time” on page 10-12
• “CPU Overload Options” on page 10-14
• “Execution Profiling for Real-Time Applications” on page 10-19
• “Reduce Build Time for Simulink Real-Time Referenced Models” on page 10-27
• “Sample Time and Throughput in Real-Time Applications” on page 10-29

10

Improve Performance of Multirate Model
This example shows how to use Performance Advisor to detect blocks and parameter
settings that can reduce performance. It determines the lower limit on sample time that
does not produce a CPU overload.

Requirements

This example uses model ex_slrt_perfadv. To open this model, open the subsystem
models first:

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_perfadv_ref1')))

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_perfadv_ref2')))

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_perfadv')))

In ex_slrt_perfadv, the configuration parameter Fixed-step size (fundamental
sample time) is set to auto. The sample time is set in the referenced subsystems with a
MATLAB variable, Ts. You can change the base sample time by changing the value of Ts.

In addition to the MATLAB® software requirements, the following hardware is required:

• One Windows® development computer with an Ethernet card
• One target computer
• One crossover cable for communication between the development and target

computers

Generate Baseline

Before you optimize model ex_slrt_perfadv using Performance Advisor, generate a
baseline.

1. Open model ex_slrt_perfadv.

2. Open Performance Advisor. On the Debug tab, click Performance Advisor.

3. Set Activity to Execute real-time application.

4. Under node Performance Advisor, select all of the Baseline checks except
Determine minimum sample time.

10 Tuning Performance

10-2

Determining the minimum sample time can be a lengthy process for a large model with a
long execution time.

5. Select node Baseline, and then click Run selected checks.

For this model, the Real-Time Performance Baseline action fails because running the
real-time application produced a CPU overload on the target computer.

6. To remove this condition, increase the sample time to a value greater than the
minimum value that does not cause a CPU overload. To find the minimum sample time,
select the Determine minimum sample time check box, and then click Run this
check.

 Improve Performance of Multirate Model

10-3

To avoid the overloads that random variations can cause, set Ts to a value above the
lower limit. For example, set it to 0.003 s.

7. In the Command Window, type:

Ts = 0.003

8. Save ex_slrt_perfadv and its reference subsystems.

9. Clear the Determine minimum sample time check box, select the Real-Time
Performance Baseline check box, and then click Run this check.

10 Tuning Performance

10-4

Perform Real-Time Checks

To perform the real-time performance checks on model ex_slrt_perfadv, first create a
baseline. Then carry out the following steps using Performance Advisor.

1. Under node Performance Advisor, select all of the top-level Real-Time checks.

 Improve Performance of Multirate Model

10-5

If you have a license for Simscape™ or its related products, such as Simscape Driveline™
and Simscape Electrical™, clear those checks. ex_slrt_perfadv contains no Simscape
blocks.

2. Select the Real-Time node, and then click Run selected checks.

The model is a multirate model running on a multicore target computer, but it is not
configured to use more than one core.

10 Tuning Performance

10-6

3. In the Solver pane under Additional options, select the check box Allow tasks to
execute concurrently on target. Select the same setting for the reference subsystems
ex_slrt_perfadv_ref1 and ex_slrt_perfadv_ref2.

4. Save ex_slrt_perfadv and its reference subsystems.

5. Select the Concurrent execution check box, and then click Run this check.

 Improve Performance of Multirate Model

10-7

6. To improve the minimum sample time, select the Determine minimum sample time
check box, and then click Run this check. The result shows a sample time less than
0.0003 s. To avoid the overloads that random variations can cause, set Ts to a value
above the lower limit. For example, set it to 0.001 s.

7. In the Command Window, type:

Ts = 0.001

8. Save ex_slrt_perfadv and its reference subsystems.

Final Validation

The final validation check tests whether model ex_slrt_perfadv works after you
performed real-time performance optimizations.

1. Select the Final validation check box, and then click Run this check.

10 Tuning Performance

10-8

2. To investigate further improvements, see Execution Profiling for Real-Time
Applications.

 Improve Performance of Multirate Model

10-9

Multicore Processor Configuration
For better performance on your target computer, you can run multirate real-time
applications on multiple cores. Use this capability if your target computer has a multicore
processor and you want to take advantage of it for multirate models.

The MulticoreSupport target setting is read-only and set to 'on'.

To build and download multirate models on your multicore target computer:

1 Open your model in Simulink Editor.
2 Add a Rate Transition block to transition between rates.

Note Multirate models must use Rate Transition blocks. If your model uses other
blocks for rate transitions, building the model generates an error.

3 Select the Ensure data integrity during data transfer check box of the Rate
Transition block parameters.

4 Clear the Ensure deterministic data transfer (maximum delay) check box of the
Rate Transition block parameters. This setting forces the Rate Transition block to use
the most recent data available.

Note Because this box is cleared, the transferred data can differ from run to run.
5 Open Model Explorer. In the Simulink Editor, on the Modeling tab, select Model

Workspace.
6 In Simulink Model Explorer, right-click in the Model Hierarchy pane and select

Configuration > Add configuration for concurrent execution
7 In the Model Hierarchy pane, expand the model node and select the Configurations

node.
8 In the Contents pane, right-click the new configuration and select Open to open the

Configuration Parameters dialog box.
9 In the Configuration Parameters dialog box, select Solver.
10 Check Enable concurrent tasking.
11 Click Configure Tasks.

10 Tuning Performance

10-10

See Also
Rate Transition

More About
• “Multicore Programming with Simulink” (Simulink)

 See Also

10-11

Limits on Sample Time
The sample time you can assign to your model is limited by the kernel and by the
complexity of your model.

The kernel enforces lower and upper bounds on sample time:

Mode Lower Bound Upper Bound
Interrupt 8e-6 s 10 s
Polling 5e-7 s 10 s

In the Solver node in the Configuration Parameters dialog box, set Fixed-step size to a
value within these bounds. If you set Fixed-step size to a value outside these bounds and
attempt to build and download the real-time application, the application load fails with an
error message.

At run time, if you attempt to set the sample time to a value outside these bounds, the
kernel prints an error message.

Within these bounds, if you specify too short a sample time for the complexity of your
model, the target computer can experience a CPU overload. To address this problem, use
the following procedure:

1 To find the minimum sample time for your model, run
SimulinkRealTime.utils.minimumSampleTime in the Command Window.

2 Change the value of Fixed-step size to a value slightly above the minimum sample
time value.

3 Rebuild and download the model.

See Also
SimulinkRealTime.utils.getConsoleLog |
SimulinkRealTime.utils.minimumSampleTime

More About
• “Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 25-

5

10 Tuning Performance

10-12

• “Execution Modes” on page 7-2

 See Also

10-13

CPU Overload Options

In this section...
“Option Behavior” on page 10-14
“Violation of xPCMaxOverloads” on page 10-16
“Violation of xPCMaxOverloadLen” on page 10-17
“Violation of xPCStartupFlag” on page 10-17

Sometimes a real-time application running on the target computer does not have enough
time to complete processing before the next time step. This condition is called a CPU
overload. An overload is registered every time an execution step cannot be executed
because a previous step is running.

For example, assume that your model sample time is 1 ms, but running a particular model
step takes 3.1 ms. This model step causes the kernel to skip three steps and causes three
overloads.

Typically, the Simulink Real-Time kernel halts model execution when it encounters a CPU
overload. However, some real-time applications can tolerate several CPU overloads
without significant loss of data, for example during start up. For such applications, you
can allow a specified number and configuration of CPU overloads. You do this using the
TLCOptions settings xPCMaxOverloads, xPCMaxOverloadLen, and xPCStartupFlag.

Note Allowing the target computer CPU to overload can cause incorrect results,
especially for multirate models. Use these TLC command-line options only for diagnosis.
When your diagnosis is complete, turn off these options.

Option Behavior
If your real-time application causes a CPU overload, it finishes the current execution step
and ignores timer interrupts. At the end of the execution step, the kernel compares the
CPU overload count to the limits defined by xPCMaxOverloads and
xPCMaxOverloadLen. If the count does not exceed the limits, the application executes at
the next step. Otherwise it stops.

The limits are:

10 Tuning Performance

10-14

• xPCMaxOverloads — Number of acceptable overloads during a real-time application
execution.

When xPCMaxOverloads is set to a value, the Simulink Real-Time software stops
execution with a CPU overload at the next overload within the same application
execution. For example, if xPCMaxOverloads is set to 3, the software stops with a
CPU overload at the fourth overload in the same application execution.

The default value of 0 means that overloads are registered on the first overload.
• xPCMaxOverloadLen — Number of acceptable overloads, in units of sample time,

within the same execution step.

When xPCMaxOverloadLen is set to a value, the software stops execution with a CPU
overload at the next overload within the same execution step. For example, if
xPCMaxOverloadLen is set to 2, the software stops execution with a CPU overload at
the third overload within the same execution step.

The default value of 0 means that overloads are registered on the first overload within
the same execution step.

Specify a value that is less than or equal to the value for xPCMaxOverloads. If
xPCMaxOverload is set to a value, for example 4, and xPCMaxOverloadLen is not
defined, the real-time application stops if one of following occurs:

• The cumulative overloads since execution start is greater than 4.
• One execution step has two overloads.

• xPCStartupFlag — Number of executions of the model at start up.

xPCStartupFlag temporarily disables CPU overload checking during the first few
model execution steps. After the model finishes the first xPCStartupFlag steps, the
software reenables CPU overload checking, which takes effect for the next execution
of the model.

The default value of 1 means that overloads are ignored on the first step. If
xPCMaxOverloads and xPCMaxOverloadLen are not set, their default setting
determines the software response to overloads.

xPCMaxOverloads and xPCMaxOverloadLen both count overloads, but over different
time spans. xPCMaxOverloads counts the CPU overloads that were seen so far in the
real-time application execution. xPCMaxOverloadLen counts the overloads that were
seen within one execution step.

 CPU Overload Options

10-15

The three options interact. When the Simulink Real-Time kernel runs the model, it
compares the number of CPU overloads to the values of xPCMaxOverloads and
xPCMaxOverloadLen. When the number of CPU overloads reaches the lower of these
two values, the kernel stops executing the model.

Suppose that you enter the following TLCOptions settings for model xpcosc.

set_param('xpcosc','TLCOptions','-axPCMaxOverloads=30
 -axPCOverLoadLen=2 -axPCStartupFlag=5')

With these settings, the software ignores CPU overloads for the first five iterations
through the model. After the first five iterations, the software allows up to 30 CPU
overloads, allowing at most two CPU overloads per model step.

You can use the blocks Set Overload Counter and Get Overload Counter to set and track
CPU overload numbers. You can use the Time Stamp Counter block to profile your model

Violation of xPCMaxOverloads
Assume that xPCMaxOverloads is 3 and xPCMaxOverloadLen is 2. The software
tolerates the first three overloads and stops executing at the fourth. The number of
overloads exceeds the maximum number allowed for real-time execution.

10 Tuning Performance

10-16

Violation of xPCMaxOverloadLen
Assume that xPCMaxOverloads is 3 and xPCMaxOverloadLen is 1. The software
tolerates the first two overloads and stops executing at the third. The second step
execution is longer than the maximum allowed overload length of one sample time.

Violation of xPCStartupFlag
Assume that xPCStartupFlag is 3. The kernel ignores CPU overloads for the first three
time steps and stops executing on the first overload in the next time step.

 CPU Overload Options

10-17

See Also
“TLC Command-Line Options” | Get Overload Counter | Set Overload Counter

10 Tuning Performance

10-18

Execution Profiling for Real-Time Applications
This example shows how you can profile the task execution time and function execution
time of your real-time application running on the target computer. Using that information,
you can then tune its performance.

Profiling is especially useful if the real-time application is configured to take advantage of
multicore processors on the target computer. To profile the real-time application:

• In the Configuration Parameters for the model, enable the collection of function
execution time data during execution.

• Build, download, and execute the model.
• Start and stop the profiler.
• Display the profiler data.

Profiling slightly increases the execution time of the real-time application.

Configure Real-Time Application for Function Execution Profiling

In this section, the model is dxpcmds6t. To open this model, open the subsystem models
first:

• open_system(fullfile(matlabroot, '\toolbox', '\rtw', '\targets', '\xpc', '\xpcdemos',
'\dxpcmds_ref1'))

• open_system(fullfile(matlabroot, '\toolbox', '\rtw', '\targets', '\xpc', '\xpcdemos',
'\dxpcmds_ref2'))

• open_system(fullfile(matlabroot, '\toolbox', '\rtw', '\targets', '\xpc', '\xpcdemos',
'\dxpcmds6t'))

1 Open model dxpcmds6t.
2 In the top model, open the Configuration Parameters dialog box. Select Code

Generation >> Verification.
3 Select the Measure function execution times check box. The Measure task

execution time check box is checked and locked.

 Execution Profiling for Real-Time Applications

10-19

4. Click OK. Save model dxpcmds6t in a local folder.

Generate Real-Time Application Execution Profile

In this section, generate profile data for model dxpcmds6t on a multicore target
computer.

This procedure assumes that you have configured the target computer to take advantage
of multiple cores. It also assumes that you previously configured the model for task and
function execution profiling.

1 Open, build, and download the model.

mdl = 'dxpcmds6t';
open_system(mdl);
rtwbuild(mdl);
tg = slrt('TargetPC1');
load(tg,mdl);

10 Tuning Performance

10-20

When you include profiling, the Code Generation Report is generated by default. It
contains links to the generated C code and include files. By clicking these links, you can
examine the generated code and interpret the Code Execution Profile Report.

2. Start the profiler and then execute the real-time application.

startProfiler(tg);
start(tg);
pause(1)

 Execution Profiling for Real-Time Applications

10-21

stopProfiler(tg);
stop(tg);

3. Display the profiler data.

profiler_data = getProfilerData(tg)

The Execution Profile plot shows the allocation of execution cycles across the four
processors, indicated by the colored horizontal bars. The model sections are listed in the
Code Execution Profiling Report. The cores are indicated by the numbers underneath the
bars.

For more information about the time line in the execution profile plot, see timeline.

10 Tuning Performance

10-22

The Code Execution Profiling Report displays model execution profile results for each
task.

• To display the profile data for a section of the model, in the Section column, click the
Membrane button next to the task.

 Execution Profiling for Real-Time Applications

10-23

• To display the TET data for the section in Simulation Data Inspector, click the Plot
time series data button.

• To view the section in Simulink Editor, click the link next to the Expand Tree button.

• To view the lines of generated code corresponding to the section, click the Expand
Tree button and then click the View Source button.

10 Tuning Performance

10-24

 Execution Profiling for Real-Time Applications

10-25

4. To investigate further improvements, see Improve Performance of Multirate Model.

See Also
timeline

10 Tuning Performance

10-26

Reduce Build Time for Simulink Real-Time Referenced
Models

In a parallel computing environment, you can increase the speed of code generation and
compilation for models containing large model reference hierarchies. Achieve the speed
by building referenced models in parallel whenever conditions allow. For example, if you
have Parallel Computing Toolbox software, code generation and compilation for each
referenced model can be distributed across the cores of a multicore host computer. If you
also have MATLAB Parallel Server™ software, you can distribute code generation and
compilation for each referenced model across remote workers in your MATLAB Parallel
Server configuration.

The Simulink Real-Time software allows you to build referenced models in parallel on a
compute cluster. In this way, you can more quickly build and download real-time
applications to the target computer.

The following procedure assumes that you have a functioning Simulink Real-Time
installation on your development computer.

1 Identify a set of worker computers, which can be separate cores on your development
computer or computers in a remote cluster running under Windows.

2 If you intend to use separate cores on the development computer, install Parallel
Computing Toolbox on the development computer.

3 If you intend to use computers in a remote cluster:

a Install the following on each cluster computer:

• MATLAB
• Parallel Computing Toolbox
• MATLAB Parallel Server
• Simulink Real-Time
• Build compiler

Install the same compiler and compiler version at the same location as on the
development computer.

b Start and configure the remote cluster according to the instructions at
www.mathworks.se/support/product/DM/installation/ver_current.

 Reduce Build Time for Simulink Real-Time Referenced Models

10-27

https://se.mathworks.com/support/product/DM/installation/ver_current.html

4 Run MATLAB on the development computer.
5 In MATLAB, call the parpool function to open a parallel pool on the cluster.
6 To configure the compiler for the remote workers as a group, call the pctRunOnAll

function. For example:
pctRunOnAll('slrtsetCC(''VisualC'',
 ''C:\Program Files\Microsoft Visual Studio 9.0'')')

In this configuration, the development computer and the remote workers have
installed a supported version of Microsoft Visual Studio. See Supported and
Compatible Compilers - All Products.

7 From the top model of the model reference hierarchy, open the Configuration
Parameters dialog box. Go to the Model Referencing pane and select the “Enable
parallel model reference builds” (Simulink) option. This selection enables the
parameter “MATLAB worker initialization for builds” (Simulink). For more
information, see “Reduce Build Time for Referenced Models by Using Parallel Builds”
(Simulink Coder).

8 Build and download your model.

See Also
parpool | pctRunOnAll

More About
• “Reduce Build Time for Referenced Models by Using Parallel Builds” (Simulink

Coder)

10 Tuning Performance

10-28

https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html

Sample Time and Throughput in Real-Time Applications
After you design and debug the functionality of your model in Simulink, test and debug it
as a real-time application. While testing your real-time application, you can encounter
performance issues.

Real-Time Performance Factors
Real-time performance consists of sample time and throughput.

Sample time refers to the time during which the real-time application reads data into
blocks and processes it. Physical systems have an inherent sample time (the Nyquist
sample time) that is based on physical constraints. For example, when you use the brakes
in a truck, the inertia of the truck limits how fast the road speed can change. A significant
change requires about a second. Therefore, the speedometer does not need to sample the
road speed more often than every tenth of a second.

If the data changes significantly between samples taken at the inherent sample time,
sample times longer than that rate can miss those changes. If the data includes
undesirable noise, sample times shorter than the inherent sample time can capture that
noise.

Throughput refers to how much data the real-time application can process without a CPU
overload in a given sample time. Throughput is limited by the resources that are available
from the target computer. Sample times that are too short can overload the target
computer CPU and stop execution.

For more information, see:

• “Sample Times in Systems” (Simulink)

Resources
The target computer system resources that affect a real-time application include:

• CPU cycles available on multicore systems
• Target computer RAM access speed
• RAM available for RAM disk
• Backplane I/O channel bandwidth and latency

 Sample Time and Throughput in Real-Time Applications

10-29

• Disk storage bandwidth and latency

A multicore target computer can improve throughput and sample time. A multicore
computer contains multiple CPUs, or cores, that share the processing load. In a four-core
target computer, for example, the following tasks can happen simultaneously on different
cores:

• Execute a referenced model
• Acquire data through an I/O channel
• Log results to a RAM disk
• Communicate with the development computer

The strategy that you use to improve throughput depends on your application system
requirements.

Application System
Requirement

Hardware
Capabilities

Modeling Style Available Tools

Heavy sensor and
effector I/O

Fast I/O channels Simulink Real-Time
profiler

Heavy real-time
computation

• Additional
multicore
processors

• Faster multicore
processors

• Faster RAM speed

Polling mode • Simulink
Performance
Advisor

• Minimum sample
time function

Reference models
with different
inherent rates

Multicore processors • Rate transition
blocks

• Trade off
deterministic data
transfer for data
transfer speed

• Concurrent
execution options

• Reference model
task mapping

Simulink
Performance Advisor

10 Tuning Performance

10-30

Application System
Requirement

Hardware
Capabilities

Modeling Style Available Tools

Real-time
applications
connected by
network

• Multiple target
computers

• Fast network
switches

Multiple real-time
applications that use
network blocks for
communication

• Simulink Real-
Time profiler

• Network analyzer

Data logging • Large fast hard
drive

• Large RAM disk

• Selective marking
of signals for
capture

• File scopes

Simulation Data
Inspector in buffered
mode

Low-level mechanical
and electronic
control

FPGA HDL Coder HDL
Workflow Advisor

Improving Performance with Concurrency
Whether you can use concurrency to improve real-time performance depends on the
model. For example, a model that has heavy data traffic between referenced models is
limited by data propagation and not by data processing. For more information, see:

• “Multicore Programming with Simulink” (Simulink)
• “Limitations with Multicore Programming in Simulink” (Simulink)

To use concurrency, first convert the blocks at the root level of your model into MATLAB
System blocks or into models that are referenced with Model blocks. Do not use
Subsystem blocks.

Simulink provides concurrency settings in the Solver pane, under Additional options:

• Allow tasks to execute concurrently on target — 'on' (default) or 'off'. When
this parameter is 'on' (the default), the kernel allocates tasks to the next available
CPU core. For most models, use the default value.

When Allow tasks to execute concurrently on target is 'off', the parameter
Treat each discrete rate as a separate task is available. When Treat each
discrete rate as a separate task is 'off', the real-time application executes in
single-tasking mode. In single-tasking mode, the application does not take advantage
of a multicore target computer.

 Sample Time and Throughput in Real-Time Applications

10-31

In a future release, single-tasking mode will not work for multirate Simulink Real-Time
models.

• Enable explicit model partitioning for concurrent behavior — 'on' or 'off'
(default). This parameter is available only if Allow tasks to execute concurrently on
target is 'on' and you click Configure tasks.

This scenario shows how to use the inherent sample time of a model and concurrency to
improve the sample time and throughput of a model. As frequently happens during
prototyping, the original version is a single-rate model. Using Simulink Performance
Advisor and the profiler, this scenario iterates through these tasks:

• Eliminating CPU overloads while executing in the required sample time range
• Converting the single-rate model to multirate by using the design specification
• Improving multirate performance by using concurrency with implicit partitioning
• Refactoring a multirate model to reduce the CPU requirements of individual

referenced models
• Improving multirate performance by using concurrency with explicit partitioning

At each stage, you view the allocation of single-rate and multirate models among the
cores of a multicore target computer by using the Simulink Real-Time profiler functions.

Prerequisites

This scenario assumes that you can:

1 Open Simulink Real-Time Explorer.
2 Start the target computer.
3 Connect Explorer to the target computer.
4 Build and download a real-time application to the target computer.
5 Execute a real-time application on the target computer.

For more information, see Related Topics.

Single-Rate Model

You implemented the basic functionality as a single-rate model. To expedite tuning the
sample time, you used variable Ts to define the base sample time for the constant blocks
in the ref1 and ref2 referenced models.

10 Tuning Performance

10-32

You debugged the model at a sample time of Ts = 1.0e-3 s. To meet its real-time
performance requirement, this model must achieve a base sample time in the range
1.0e-4 ≤ Ts ≤ 3.0e-4 while running on a four-core target computer.

Test Against Requirement

To test the model , set its base sample time to the top of the required range, 3.0e-4 s.

1 To open this model, open these files in sequence:

a open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_single_rate_ref1')))

b open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_single_rate_ref2')))

c open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_single_rate')))

To view the sample time legend, right-click in Simulink Editor and click Sample
Time Display > All. For a single-rate model, the top-level sample time legend color
applies to all referenced models.

2 Set Ts = 3.0e-4.
3 Build, download, and execute the real-time application.

The real-time application overloads the CPU. The target computer does not have
enough CPU cycles to completely execute the model at the basic sample time.

Determine Minimum Sample Time

Because the CPU overloaded, you cannot take a baseline until you have determined the
minimum sample time.

1 Open the Performance Advisor. On the Debug tab, click Performance Advisor.
2 Select the Execute real-time execution activity.
3 Select and run the baseline checks other than Real-Time Performance Baseline,

including Determine minimum sample time.
4 Evaluate the smallest sample time this model can attain, about 2.2e-3.
5 To avoid CPU overloads caused by random variations, set Ts to a value about 5%

higher than that sample time, or Ts = 2.3e-3.

 Sample Time and Throughput in Real-Time Applications

10-33

Determine Baseline

Using Performance Advisor, establish a baseline and evaluate whether improvement is
possible for this version of the model.

1 In Performance Advisor, run Real-Time Performance Baseline.

The run succeeds and produces a pie chart.

10 Tuning Performance

10-34

This chart shows two usage allocations, BaseRate and Background. The BaseRate
allocation shows the execution of the single-rate real-time application as one task.
The Background allocation shows the execution of the kernel tasks, such as
accessing the target computer disk for data logging or communicating between the
development and target computers.

This example uses a four-core target computer, but the real-time application only
uses a quarter of the available CPU cycles. BaseRate has a low margin before CPU
overload, about 5%. To improve performance, the real-time application must use more
of the available CPU resources.

2 As a best practice, run all of the Real-Time checks except Simscape checks.

The Real-Time checks pass. This version of the model cannot be improved further.

Evaluate Task Allocation

Evaluate the allocation of tasks across the four cores.

1 In the Command Window, run the profiler:

tg = slrt;
startProfiler(tg);
start(tg);
stop(tg);

The stop function also calls the stopProfiler function.
2 Retrieve the profiler data and display the results:

profiler_data = getProfilerData(tg);
plot(profiler_data);

To skip initialization, start the display at 3*Ts. To show a representative example of
concurrency, use a range of 4*Ts.

 Sample Time and Throughput in Real-Time Applications

10-35

In the profiler display, the highlighted numbers within each task bar give the task
number. Task number 2 shows how much of the available time is being used by the
BaseRate task. Task number 1 is the timer interrupt, part of the background tasks.

10 Tuning Performance

10-36

The labels under the task bars give the CPU core on which each task runs. Because
this model is a single-rate model, the referenced model tasks run one after the other
on core 2 at the same rate after each timer interrupt.

The execution bar at one timer interrupt almost fills the time until the next timer
interrupt. If the execution bar at one interrupt overlaps with the execution bar at the
next, the target computer CPU overloads and stops execution.

Multirate Model: Concurrency On, Implicit Partitioning

At this stage of the optimization process, the current value of Ts = 2.3e-3, which is
outside the required range of 1.0e-4 ≤ Ts ≤ 3.0e-4.

To improve the sample time of the real-time application, start with the inherent rates of
the model. After converting the single-rate model to a multirate model, you can turn on
concurrency with implicit partitioning.

Convert to Multirate Model

From the design specification, determine which parts of the model can run at lower rates
and which cannot.

1 Specify rates for parts of the model.

As a best practice, specify rates that are multiples of a single base rate. In this model,
the valid rates are multiples of Ts: Ts, 2*Ts, 3*Ts, and 4*Ts.

2 In the original model, Ref1/Out4 connects directly to Ref2/In1. Because Ref1/
Out4 and Ref2/In1 have different rates, add a Rate Transition block to Ref1.

3 Configure the Rate Transition block:

• Set the Ensure data integrity during data transfer parameter.
• Clear the Ensure deterministic data transfer (maximum delay) parameter.

Data transfers between triggered tasks cannot require deterministic data
integrity.

4 To open this model, open these files in sequence:

a open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_ref1')))

b open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_ref2')))

 Sample Time and Throughput in Real-Time Applications

10-37

c open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate')))

For this model, the sample time legend colors for the top level also apply to the Ref1
referenced model. A separate set of sample time legend colors appears for the Ref2
referenced model.

Configure Implicit Partitioning

To configure implicit partitioning, turn on task-level concurrency and take the defaults.

1 Open the Configuration Parameters for the top-level model. On the Real-Time tab,
click Hardware Settings.

2 Select Solver > Allow tasks to execute concurrently on target.
3 On the Simulation tab, click Prepare > Update Model.

Test Against Requirement

To test the model , set its base sample time to the top of the required range, 3.0e-4 s.

1 Set Ts = 3.0e-4.
2 Build, download, and execute the real-time application.

The real-time application overloads the CPU. The target computer does not have
enough CPU cycles to completely execute the model at the basic sample time.

Determine Minimum Sample Time

Because the CPU overloaded, you cannot take a baseline until you have determined the
minimum sample time.

1 Open the Performance Advisor. On the Debug tab, click Performance Advisor.
2 Select the Execute real-time execution activity.
3 Select and run the baseline checks other than Real-Time Performance Baseline,

including Determine minimum sample time.
4 Evaluate the smallest sample time this model can attain, about 4.2e-4.
5 To avoid CPU overloads caused by random variations, set Ts to a value about 5%

higher than that sample time, or Ts = 4.4e-4.

10 Tuning Performance

10-38

Determine Baseline

Using Performance Advisor, establish a baseline and evaluate whether improvement is
possible for this version of the model.

1 To take a baseline for optimization, run Real-Time Performance Baseline.

The run succeeds and produces a pie chart.

 Sample Time and Throughput in Real-Time Applications

10-39

The CPU core usage has improved, but the real-time application only uses half of the
available CPU cycles. Also, SubRate2 has a low margin before CPU overload, about
5%. The real-time application needs better load balancing to improve the base sample
time and to make its execution more likely to succeed.

2 As a best practice, run all of the Real-Time checks except Simscape checks.

The Real-Time checks pass. This version of the model cannot be improved further.

Evaluate Task Allocation

Evaluate the allocation of tasks across the four cores.

1 In the Command Window, run the profiler:

tg = slrt;
startProfiler(tg);
start(tg);
stop(tg);

2 Retrieve the profiler data and display the results:

profiler_data = getProfilerData(tg);
plot(profiler_data);

To skip initialization, start the display at 3*Ts. To show a representative example of
concurrency, use a range of 4*Ts.

10 Tuning Performance

10-40

The execution bars for SubRate2, the task with the largest CPU requirement, almost
overlap. Concurrency is in full operation as of time tick 1.32e-3.

Refactored Multirate Model: Concurrency On, Explicit Partitioning

At this stage of the optimization process, the current value of Ts = 4.4e-4, which is still
outside the required range of 1.0e-4 ≤ Ts ≤ 3.0e-4.

 Sample Time and Throughput in Real-Time Applications

10-41

You can improve the performance of your real-time application by explicitly balancing the
load of the different processing nodes in the multicore target computer. This process
involves iteratively refactoring the model, moving tasks between different processing
nodes, and testing the result. For more information, see “Concepts in Multicore
Programming” (Simulink).

Before refactoring a model, note which tasks of a system depend on the output of other
tasks. The data dependency between tasks determines their execution order within a time
step. Two or more partitions containing data dependencies in a cycle creates a data
dependency loop, also known as an algebraic loop. To detect these loops, in the
Diagnostics pane, set the Algebraic loop parameter to error. Simulink identifies
algebraic loops during execution, displays an error message, and highlights the portion of
the block diagram that comprises the loop. Remove these loops from your model. For
more information, see “Algebraic loop” (Simulink).

Refactor Model

In this scenario, the multirate model consists of two referenced models, each containing
many signals to process during each sample time. With implicit partitioning, each
referenced model task is assigned to a core. To improve interleaving among CPU cores,
divide each referenced model in half. Each half contains half the number of signals in the
original referenced model. This configuration produces the same number of referenced
models as cores with each referenced model having smaller CPU requirements than the
original.

1 Split the Ref1 referenced models into two referenced models, Ref1A and Ref1B.
Each block has half the number of signals as Ref1.

2 Split the Ref2 referenced models into two referenced models, Ref2A and Ref2B.
Each block has half the number of signals as Ref2.

3 To open this model, open these files in sequence:

a open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_partition_ref1A')))

b open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_partition_ref1B')))

c open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_partition_ref2A')))

d open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_partition_ref2B')))

10 Tuning Performance

10-42

e open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_partition')))

Configure Explicit Partitioning

To configure explicit partitioning, turn on task-level concurrency and explicitly configure
the tasks for each referenced model. Explicit partitioning can increase the CPU
interleaving of real-time tasks.

1 Open the Configuration Parameters for the top-level model. On the Real-Time tab,
click Hardware Settings.

2 Select Solver > Allow tasks to execute concurrently on target.
3 Click Configure Tasks, and then select Enable explicit model partitioning for

concurrent behavior.
4 Under Concurrent Execution > Tasks and Mapping, open CPU > Periodic.
5 Create periodic tasks for each rate in each referenced model. Name the tasks

Model1_R1, Model1_R2, and so on.

You use a periodic trigger to represent periodic interrupt sources, such as a timer.
The periodicity of the trigger is either the base rate of the task or the period of the
trigger. See “Concepts in Multicore Programming” (Simulink).

6 Assign each periodic task to the corresponding rate in each referenced model.

• Model1, Model3 — Four tasks of rates Ts, 2*Ts, 3*Ts, and 4*Ts.
• Model2, Model4 — Three tasks of rates Ts, 3*Ts, and 4*Ts

At the end of this process, the Concurrent Execution window looks like the figure.

 Sample Time and Throughput in Real-Time Applications

10-43

7 On the Simulation tab, click Prepare > Update Model.

For this model, the sample time legend colors for the top level also apply to the Ref1A
and Ref1B referenced models. A separate set of sample time legend colors appears for
the Ref2A and Ref2B referenced models.

Test Against Requirement

To test the model , set its base sample time to the top of the required range, 3.0e-4 s.

10 Tuning Performance

10-44

1 Set Ts = 3.0e-4.
2 Build, download, and execute the real-time application.

The real-time application runs. Your model has met the basic sample-time
requirement.

Determine Minimum Sample Time

To evaluate where this version of the model falls in the sample-time range and how much
margin it has:

1 Open the Performance Advisor. On the Debug tab, click Performance Advisor.
2 Select the Execute real-time execution activity.
3 Select and run the baseline checks other than Real-Time Performance Baseline,

including Determine minimum sample time. You cannot take a baseline until you
have determined the minimum sample time.

4 Evaluate the smallest sample time this model can attain, about 2.6e-4.
5 To avoid CPU overloads caused by random variations, set Ts to a value about 5%

higher than that sample time, or Ts = 2.7e-4.

Determine Baseline

Using Performance Advisor, establish a baseline and evaluate whether improvement is
possible for this version of the model.

1 To take a baseline, run Real-Time Performance Baseline.

The run succeeds and produces output like the figure.

 Sample Time and Throughput in Real-Time Applications

10-45

10 Tuning Performance

10-46

At the lowest achievable sample time, this real-time application uses three-quarters
of the available CPU cycles. The smallest margin before CPU overload is about 27%,
which is an improvement over the 5% margin in the previous version.

2 As a best practice, run all of the Real-Time checks except Simscape checks.

The Real-Time checks pass. This version of the model cannot be improved further.

Evaluate Task Allocation

Evaluate the allocation of tasks across the four cores.

1 In the Command Window, run the profiler:

tg = slrt;
startProfiler(tg);
start(tg);
stop(tg);

2 Retrieve the profiler data and display the results:

profiler_data = getProfilerData(tg);
plot(profiler_data);

To skip initialization, start the display at 3*Ts. To show a representative example of
concurrency, use a range of 4*Ts.

 Sample Time and Throughput in Real-Time Applications

10-47

10 Tuning Performance

10-48

The Model*_R3 tasks start running on all four processors, but Model*_R1 tasks
preempt them. The overhead of preemption limits the performance improvement that
you can achieve by using concurrency alone.

Additional Optimizations
In the model scenario, the change that produced the greatest improvement was going
from single-rate to multirate execution with the default task mapping (over 5X
improvement). The other optimization produced less improvement (1.5X), but was
required to reach the required sample time of 1.0e-4 ≤ Ts ≤ 3.0e-4.

Optimization Achievable Sample Time Ts
SIngle-rate 2.3e-3
Multirate, implicit task mapping 4.4e-4
Partitioned multirate, explicit task mapping 2.7e-4

To gain more improvement, consider the following optimizations.

Isolated Rate Transitions

If a multirate model contains many rate-transition blocks covering a few overlapping
rates, consider extracting each similar rate transition into a new referenced model. You
can then set the Enable explicit model partitioning for concurrent behavior
parameter and create an explicit periodic task mapping for the new referenced models. If
a referenced model does not contain a block with the base-rate sample time, add a
separate base-rate task to the mapping table for that model.

For this model, factoring out rate transitions provides only a small improvement. To open
ex_slrt_multirate_refactor, open these files in sequence:

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_refactor_ref1A')))

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_refactor_ref2A')))

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_refactor_ref3A')))

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_refactor_ref1B')))

 Sample Time and Throughput in Real-Time Applications

10-49

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_refactor_ref2B')))

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_refactor_ref3B')))

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_refactor')))

Explicit Partitioning of Single-Rate Model

If the model is a single-rate model with a high computational requirement for each
referenced model without data dependencies between them, consider setting the Enable
explicit model partitioning for concurrent behavior parameter. You can then create
an explicit periodic task mapping for each of the referenced models.

The improvement that you can achieve by explicitly mapping the tasks of a single-rate
model is limited by the number of cores. For example, if you have four cores and the tasks
run at a single rate, the most you can achieve is a 4X improvement in CPU usage.

Function Execution Optimization

To find additional optimizations, consider running the Simulink Real-Time profiler with
function execution time logging enabled (see “Profiling and Optimization”). The profiler
provides detailed, low-level information about the CPU tasks. You can then identify
bottleneck blocks and replace or improve them.

FPGA Coprocessing

In cases where you cannot meet your system requirements by other optimization
methods, consider embedding the crucial algorithms in an FPGA by using HDL Coder
HDL Workflow Advisor.

See Also
Enable Profiler | Profiler Data | Rate Transition | SimulinkRealTime.‐
utils.minimumSampleTime | getProfilerData | resetProfiler | startProfiler
| stopProfiler

More About
• “Simulink Real-Time Performance Advisor Checks”

10 Tuning Performance

10-50

• “Getting Started with Simulink Real-Time”
• “Improve Simulation Performance Using Performance Advisor” (Simulink)
• “Multicore Programming with Simulink” (Simulink)
• “Sample Times in Systems” (Simulink)
• “Limitations with Multicore Programming in Simulink” (Simulink)
• “Concepts in Multicore Programming” (Simulink)
• “Improve Performance of Multirate Model” on page 10-2
• “Profiling and Optimization”
• “FPGA Subsystem Configuration”
• “Algebraic loop” (Simulink)

 See Also

10-51

Execution with MATLAB Scripts

53

Real-Time Applications and Scopes
in the MATLAB Interface

• “Real-Time Application Objects” on page 11-2
• “Real-Time Scope Objects” on page 11-7
• “Acquire Signal Data with File Scopes” on page 11-12
• “Acquire Signal Data into Dynamically Named Files” on page 11-14
• “Scope Trigger Configuration” on page 11-16
• “Pretriggering and Posttriggering of Scopes” on page 11-17
• “Trigger One Scope with Another Scope” on page 11-19
• “Minimize Data Gaps with Two Scopes” on page 11-26

11

Real-Time Application Objects
The Simulink Real-Time software uses a SimulinkRealTime.target object to
represent the target kernel and your real-time application. Use real-time application
object functions to run and control real-time applications on the target computer with
scope objects to collect signal data.

An understanding of the real-time application object properties and functions helps you to
control and test your real-time application on the target computer.

A real-time application object on the development computer represents the interface to a
real-time application and the kernel on the target computer. You use real-time application
objects to run and control the real-time application.

When you change a real-time application object property on the development computer,
information is exchanged with the target computer and the real-time application.

To create a real-time application object:

1 Build a real-time application. The Simulink Real-Time software creates a real-time
application object during the build process.

2 Use the real-time application object function SimulinkRealTime.target. In the
MATLAB Command Window, type:

tg = SimulinkRealTime.target

A SimulinkRealTime.target object has properties and functions specific to that
object. The real-time application object functions allow you to control a real-time
application on the target computer from the development computer. You enter real-time
application object functions in the MATLAB window on the development computer, or you
can use MATLAB code scripts. To access the help for these functions from the command
line, use the syntax:

doc SimulinkRealTime.target/function_name

If you want to control the real-time application from the target computer, use target
computer commands (see “Control Real-Time Application at Target Computer Command
Line” on page 9-2).

11 Real-Time Applications and Scopes in the MATLAB Interface

11-2

Create Real-Time Application Objects
To create a real-time application object:

1 Build a real-time application. The Simulink Real-Time software creates a real-time
application object during the build process.

2 To create a specific real-time application object, or to create multiple real-time
application objects in your system, use the real-time application object function
SimulinkRealTime.target with arguments. For example, to create a real-time
application object for target TargetPC1, in the MATLAB Command Window, type:

tg = SimulinkRealTime.target('TargetPC1')

The resulting real-time application object is tg.

Using this function clarifies which application object is associated with a particular
target computer.

3 To check a connection between development and target computers, use the target
function ping. For example, type:

ping(tg)
4 To create a real-time application object for the default target computer, use the

creation function SimulinkRealTime.target without arguments. For example, in
the MATLAB Command Window, type:

tg = SimulinkRealTime.target

The resulting real-time application object is tg.

Note If you use SimulinkRealTime.target without arguments to create a real-time
application object, use Simulink Real-Time Explorer to configure your target computer.
Doing so clarifies which real-time application object is associated with a particular target
computer.

Display Application Object Properties
To monitor a real-time application, list the real-time application object properties. The
properties include the execution time and the average task execution time.

 Real-Time Application Objects

11-3

After you build a real-time application and real-time application object from a Simulink
model, you can list the real-time application object properties. This procedure uses the
default real-time application object name tg as an example.

1 In the MATLAB window, type:

tg = slrt;

The current real-time application properties are uploaded to the development
computer. MATLAB displays a list of the real-time application object properties with
the updated values.

The real-time application object properties for TimeLog, StateLog, OutputLog, and
TETLog are not yet updated.

2 Type:

start(tg)

The Status property changes from stopped to running. The log properties change
to Acquiring.

For a list of real-time application object properties with a description, see
SimulinkRealTime.target.

Set Real-Time Application Object Property Values
You can change a real-time application object property by using the Simulink Real-Time
dot notation on the development computer. (For limitations on target property changes to
sample times, see “Target Computer Configuration and Control Methods”.)

With the Simulink Real-Time software, you can use object property syntax to change the
real-time application object properties.

target_object.property_name = new_property_value

For example, to change the stop time for the real-time application running on target tg,
in the MATLAB window, type:

tg = slrt;
tg.StopTime = 1000

11 Real-Time Applications and Scopes in the MATLAB Interface

11-4

When you change a real-time application object property, the new property value is
downloaded to the target computer. The Simulink Real-Time kernel then receives the
information and changes the behavior of the real-time application.

To get a list of the writable properties, type target_object. The build process assigns
the default name of the real-time application object to tg.

Get Real-Time Application Object Property Values
You can list a property value in the MATLAB window or assign that value to a MATLAB
variable. With the Simulink Real-Time software, you can use object property syntax.

target_object.property_name

For example, to access the stop time for the real-time application running on target tg, in
the MATLAB window, type:

tg = slrt;
endrun = tg.StopTime

To get a list of readable properties, type target_object. Without assignment to a
variable, the property values are listed in the MATLAB window.

Signals are not real-time application object properties. To get the value of the
Integrator1 signal from the model xpcosc, in the MATLAB window, type:

outputvalue = getsignal(tg, 0)

0 is the signal index.

Note Function names are case-sensitive. Type the entire name. Property names are not
case-sensitive. You do not need to type the entire name, as long as the characters that you
do type are unique for the property.

Use Real-Time Application Object Functions
To run a real-time application object function, use the
function_name(target_object, argument_list) syntax.

 Real-Time Application Objects

11-5

Unlike properties, for which partial but unambiguous names are permitted, you must
enter function names in full, in lowercase. For example, to add a target scope with a
scope index of 1, in the MATLAB window, type:

tg = slrt;
addscope(tg,'target',1)

11 Real-Time Applications and Scopes in the MATLAB Interface

11-6

Real-Time Scope Objects
The Simulink Real-Time software uses scope objects to represent scopes on the target
computer. Use scope object functions to view and collect signal data.

The Simulink Real-Time software uses scopes and scope objects as an alternative to using
Simulink scopes and external mode. A scope can exist as part of a Simulink model system
or outside a model system.

• A scope that is part of a Simulink model system is a Scope block. You add a Simulink
Real-Time Scope block to the model, build a real-time application from that model, and
download that application to the target computer.

• A scope that is outside a model is not a Scope block. For example, if you create a scope
with the addscope function, that scope is not defined within the model. After the
model has been downloaded and initialized, you add this scope to the model.

This difference affects when and how the scope executes to acquire data.

Scope blocks inherit sample times. A Scope block in the root model or a normal
subsystem executes at the sample time of its input signals. A Scope block in a
conditionally executed (triggered/enabled) subsystem executes whenever the containing
subsystem executes. In the latter case, the scope can acquire samples at irregular
intervals.

Note If you display multiple scopes on the target computer and these scopes use
different sample times, the time scale for all scopes is set by the scope with the fastest
sampling time.

A scope that is not part of a model executes at the base sample time of the model. For
signals with a sample time longer than the base sample time, it acquires repeated
identical samples. For example, assume that the model base sample time is 0.001 and
that you dynamically add to the scope a signal whose sample time is 0.005. The scope
acquires five identical samples for this signal at each signal sample time.

Understanding the structure of scope objects helps you to use the MATLAB command-line
interface to view and collect signal data. A scope object on the development computer
represents a scope on the target computer. You use scope objects to observe the signals
from your real-time application during a real-time run or analyze the data after the run is
finished.

 Real-Time Scope Objects

11-7

To create a scope object:

• Add a Simulink Real-Time Scope block to your Simulink model. To determine the scope
type, set the Scope type parameter. To create a scope on the target computer, build
and download the model. Use the real-time application object function getscope to
create a scope object on the development computer.

• Build and download a model. Use the real-time application object function addscope
to create a scope on the development computer. To determine the scope type, pass one
of the following values as input parameter: target, host, or file.

Upon creation, the Simulink Real-Time software assigns the required scope object class
for the scope type: SimulinkRealTime.targetScope,
SimulinkRealTime.hostScope, or SimulinkRealTime.fileScope.

A scope object has properties and functions specific to its scope type, as well as
properties and functions in common with the other scopes. The scope object functions
allow you to control scopes on your target computer.

To control the real-time application from a target computer keyboard, use target
computer commands (see “Control Real-Time Application at Target Computer Command
Line” on page 9-2).

Display Scope Object Properties for One Scope
To list the properties of a single scope object, sc1, in the MATLAB window, type:

tg = slrt;
sc1 = getscope(tg,1)

MATLAB creates the scope object sc1 from a previously created scope.

The current scope properties are uploaded to the development computer. MATLAB
displays a list of the scope object properties with the updated values. Because sc1 is a
vector with a single element, you could also type sc1(1) or sc1([1]).

Note Only scopes of type host store data in the properties scope_object.Time and
scope_object.Data.

For a list of real-time application object properties with a description, see the target
function SimulinkRealTime.target.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-8

Display Scope Object Properties for Multiple Scopes
To list the properties of the current scope objects associated with the real-time
application object tg, in the MATLAB window, type:

tg = slrt;
getscope(tg)

The getscope function supports vector arguments. For example, to list the first and third
scopes, type:

getscope(tg,[1,3])

To assign a list of current scopes to a variable, type:

allscopes = getscope(tg)

For a list of real-time application object properties, see the target function
SimulinkRealTime.target.

Set Scope Property Values
With the Simulink Real-Time software, you can use object property syntax to set a single
scope object property.

scope_object.property_name = new_property_value

For example, to change the trigger mode for scope 1, in the MATLAB window, type:

tg = slrt;
sc1 = getscope(tg, 1);
sc1.triggermode = 'signal'

You cannot use dot notation to set vector object properties. To assign a property value to
a vector of scopes, use the set function. For example, assume that you have two scopes,
1 and 2. First assign a vector containing these scopes to the variable sc12:

sc12 = getscope(tg, [1,2]);

To set the NumSamples property of these scopes to 300, type:

set(sc12, 'NumSamples', 300);

To get a list of the writable properties, type scope_object.

 Real-Time Scope Objects

11-9

Note

• You cannot set a property of a vector of scopes to a vector of property values. For
example, you cannot set property NumSamples of vector sc12 to [100,200].

• Function names are case-sensitive. Type the entire name. Property names are not
case-sensitive. You do not need to type the entire name, as long as the characters that
you do type are unique for the property.

Get Scope Property Values
You can list a property value in the MATLAB window or assign that value to a MATLAB
variable. With the Simulink Real-Time software, you can use object property syntax to get
scope property values.

scope_object_vector(index_vector).property_name

For example, to get the number of samples from scope 1, in the MATLAB window, type:

tg = slrt;
sc1 = getscope(tg, 1);
sc1.NumSamples

To get the values of vector object properties set using the set function, you can use the
corresponding get function. For example, assume that you have two scopes, 1 and 2, with
a NumSamples property of 300.

First assign a vector containing these scopes to the variable sc12.

sc12 = getscope(tg, [1,2]);

To get the value of NumSamples for these scopes, type:

get(sc12, 'NumSamples')

You get a result like:

ans =
 [300]
 [300]

Although you cannot use dot notation to set the values of vector object properties, you
can use it to get those values:

11 Real-Time Applications and Scopes in the MATLAB Interface

11-10

sc12.NumSamples

You get a result like:

ans =
 300

ans =
 300

To get a list of readable properties, type scope_object. The property values are listed in
the MATLAB window.

Note Function names are case-sensitive. Type the entire name. Property names are not
case-sensitive. You do not need to type the entire name, as long as the characters that you
do type are unique for the property.

Use Scope Object Functions
Use the function syntax to run a scope object functions:

function_name(scope_object, argument_list)

Unlike properties, for which partial but unambiguous names are permitted, enter function
names in full, in lowercase. For example, to add signals to the first scope in a vector
containing the current scopes, in the MATLAB window, type:

allscopes = getscope(tg)
addsignal(allscopes(1), [0,1])

 Real-Time Scope Objects

11-11

Acquire Signal Data with File Scopes
You can acquire signal data into a file on the target computer. To do so, you can include a
real-time file scope in your Simulink Real-Time model. Alternatively, after you build the
real-time application and download it to the target computer, you can add a file scope to
that application.

For example, to add a file scope named sc to the real-time application, and to add signal
4 to that scope:

1 In the MATLAB window, type:

tg = slrt;
sc = addscope(tg, 'file')

The Simulink Real-Time software creates a file scope for the real-time application.
2 To add signal 4, type:

addsignal(sc, 4)
3 Caution Before starting the scope, copy previously acquired data to the development

computer. When the file scope starts, the software overwrites previously acquired
data in files of the specified name or name pattern. A partially overwritten file or a
file that is opened but left unwritten loses its original contents.

To start the scope, type:

start(sc)
4 To start the real-time application, type:

start(tg)

The Simulink Real-Time software adds signal 4 to the file scope. When you start the scope
and the real-time application, the scope saves the signal data for signal 4 to a file, by
default named C:\data.dat.

• For more information on file scopes, see “Configure Real-Time File Scope Blocks” on
page 6-97.

• To retrieve the file programmatically from the target computer for analysis, see “Using
SimulinkRealTime.fileSystem Objects” on page 12-5.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-12

• To acquire signal data into multiple files, see “Acquire Signal Data into Dynamically
Named Files” on page 11-14.

 Acquire Signal Data with File Scopes

11-13

Acquire Signal Data into Dynamically Named Files
You can acquire signal data into multiple, dynamically named files on the target computer.
For example, you can acquire data into multiple files to examine one file while the scope
continues to acquire data into other files.

To acquire data into multiple files, you can include a real-time file scope in your Simulink
Real-Time model. Alternatively, after you build a real-time application and download it to
the target computer, you can add a file scope to that application. You can then configure
that scope to log signal data to multiple files.

For example, configure a file scope named sc to the real-time application. The file scope
has these characteristics:

• Logs signal data into up to nine files whose sizes do not exceed 4096 bytes.
• Creates files whose names contain the character vector file_.dat.
• Contains signal 4.

1 In the MATLAB window, type:

tg = slrt;
tg.StopTime = Inf;

This parameter value directs the real-time application to run indefinitely.
2 To add a file scope, type:

sc = addscope(tg, 'file');
3 To enable the file scope to create multiple log files, type:

sc.DynamicFileName = 'on';

Enable this setting to enable logging to multiple files.
4 To enable file scopes to collect data up to the number of samples, and then start over

again, type:

sc.AutoRestart = 'on';

Use this setting for the creation of multiple log files.
5 To limit each log file size to 4096, type:

sc.MaxWriteFileSize = 4096;

11 Real-Time Applications and Scopes in the MATLAB Interface

11-14

You must use this property. Set MaxWriteFileSize to a multiple of the WriteSize
property.

6 To enable the file scope to create multiple log files with the same name pattern, type:

sc.Filename = 'file_<%>.dat';

This sequence directs the software to create up to nine log files, file_1.dat to
file_9.dat on the target computer file system.

7 To add signal 4 to the file scope, type:

addsignal(sc, 4);
8 Caution Before starting the scope, copy previously acquired data to the development

computer. When the file scope starts, the software overwrites previously acquired
data in files of the specified name or name pattern. A partially overwritten file or a
file that is opened but left unwritten loses its original contents.

To start the scope, type

start(sc)
9 To start the real-time application, type

start(tg)

The software creates a log file named file_1.dat and writes data to that file. When the
size of file_1.dat reaches 4096 bytes (value of MaxWriteFileSize), the software
closes the file and creates file_2.dat. When its size reaches 4096 bytes, the software
closes it and creates file_3.dat, and so on.

The software repeats this sequence until it fills the last log file, file_9.dat. If the real-
time application continues to run and collect data after file_9.dat, the software
reopens file_1.dat and overwrites the existing contents. It cycles through the other
log files sequentially.

• For more information on file scopes, see “Configure Real-Time File Scope Blocks” on
page 6-97.

• To retrieve the file programmatically from the target computer for analysis, see “Using
SimulinkRealTime.fileSystem Objects” on page 12-5.

• To acquire signal data into a single file, see “Acquire Signal Data with File Scopes” on
page 11-12.

 Acquire Signal Data into Dynamically Named Files

11-15

Scope Trigger Configuration
You can configure Simulink Real-Time scopes to acquire data right away, or define
triggers for scopes so that the Simulink Real-Time scopes wait until they are triggered to
acquire data. You can configure Simulink Real-Time scopes to start acquiring data when a
predefined trigger condition is met. The exact condition depends on the trigger mode that
you specify.

• Freerun — Acquires data when the scope is started (default).
• Software — Acquires data in response to a user request, such as a call to one of the

Scope functions (trigger (fileScope), trigger (hostScope), and trigger
(targetScope)) or a call to a C or .NET API function (xPCScSoftwareTrigger,
xPCScope.Trigger).

• Signal — Acquires data when a particular signal has crossed a preset level.
• Scope — Acquires data when another (triggering) scope starts.

You can use several additional properties to refine when a scope starts to acquire data.
For example, if you want the scope to be triggered when another signal crosses a certain
value, use Signal trigger mode. Specify:

• The signal to trigger the scope.
• The trigger level that the signal must cross to trigger the scope to start acquiring

data.
• Whether the scope is triggered on a rising signal, falling signal, or either one.

The trigger point is the sample at which the scope trigger condition is satisfied. For signal
triggering, the trigger point is the sample at which the trigger signal passes through the
trigger level. At the trigger point, the scope acquires the first sample. By default, scopes
start acquiring data from the trigger point onwards. You can modify this behavior using
pretriggering and posttriggering with the NumPrePostSamples scope property. See
“Pretriggering and Posttriggering of Scopes” on page 11-17.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-16

Pretriggering and Posttriggering of Scopes
By default, the scope starts acquiring data at the same time as the trigger event (the
trigger point). Sometimes, to observe the values that led to the trigger, you start
acquiring data a given number of samples before the trigger event (pretriggering). Other
times, to observe the system settling after the trigger, you delay acquiring data a given
number of samples after the trigger event (posttriggering).

Use the NumPrePostSamples scope property to specify pretriggering and
posttriggering. A negative value indicates pretriggering and a positive value indicates
posttriggering. For example, suppose that P is the value of NumPrePostSamples for
Scope 1 and TP is the trigger point, the sample where the trigger event occurs.

• P = 0 — Scope 1 starts acquiring data immediately at trigger point TP.

• P < 0 — Scope 1 starts acquiring data |P| samples before trigger point TP.

 Pretriggering and Posttriggering of Scopes

11-17

• P > 0 — Scope 1 starts acquiring data P samples after trigger point TP.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-18

Trigger One Scope with Another Scope
When you have started two scopes that you want to keep synchronized, you can trigger
one scope with another to acquire data. Set up the first scope with the trigger of your
choice, and then trigger the second scope from the first.

In this setup, Scope 1 triggers Scope 2.

1 Two scope objects are configured as a vector with the command:

tg = slrt;
sc = addscope(tg, 'host', [1 2]);

2 For Scope 1, set these values:

sc(1).ScopeId = 1
sc(1).NumSamples = N1
sc(1).NumPrePostSamples = P1

3 For Scope 2, set these values:

sc(2).ScopeId = 2
sc(2).NumSamples = N2
sc(2).TriggerMode = 'Scope'
sc(2).TriggerScope = 1
sc(2).NumPrePostSamples = P2

Because Scope 1 triggers Scope 2, the trigger point TP is the same for both scopes.
However, Scopes 1 and 2 can acquire different samples.

Scope-Triggered Data Acquisition
Some representative relationships between data acquisitions by Scope 1 and Scope 2 are
shown in the figures. P1 and P2 are the values of NumPrePostSamples for Scopes 1 and
2. TP is the trigger point, the sample where a trigger event occurs, for both Scopes 1 and
2. Scope 2 begins acquiring data as described.

• P1 = 0 and P2 = 0 — Scope 1 and Scope 2 start acquiring data immediately at
trigger point TP.

 Trigger One Scope with Another Scope

11-19

• P1 < 0 and P2 > 0 — Scope 1 starts acquiring data |P1| samples before trigger
point TP. Scope 2 starts acquiring data P2 samples after trigger point TP.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-20

• P1 > 0 and P2 < 0— Scope 1 starts acquiring data P1 samples after trigger point
TP. Scope 2 starts acquiring data |P2| samples before trigger point TP.

 Trigger One Scope with Another Scope

11-21

Trigger Sample Setting
For additional flexibility in scope triggering, you can use the Scope 2 trigger sample
setting.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-22

sc(2).TriggerSample = range 0 to (N + P1 - 1)

• sc(2).TriggerSample = 0 (default) — Scope 2 triggers when Scope 1 triggers.
Trigger point TP is the same sample for both scopes.

• sc(2).TriggerSample = ts > 0 — Scope 2 triggers ts samples after Scope 1 is
triggered. Trigger point TP2 for Scope 2 is ts samples after TP1 for Scope 1.

 Trigger One Scope with Another Scope

11-23

Setting sc(2).TriggerSample to a value ts larger than (N + P - 1) does not
cause an error. It implies that Scope 2 cannot be triggered, because Scope 1 cannot
acquire more than (N + P - 1) samples after TP.

• sc(2).TriggerSample = -1 (special case) — Causes Scope 2 to start acquiring
data from the sample after Scope 1 stops acquiring.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-24

 Trigger One Scope with Another Scope

11-25

Minimize Data Gaps with Two Scopes
With two scopes, you can minimize data overlap or gaps. The first scope acquires data up
to sample N, then stops. The second scope begins to acquire data at sample N+1.

In this example, the TriggerMode property of Scope 1 is set to 'Scope', but it is
explicitly triggered with the MATLAB function trigger(sc1).

You can use the trigger function to force real-time scopes to trigger, regardless of
trigger mode setting and regardless of whether the triggering criteria were met.

To minimize gaps by acquiring data with two scopes:

1 Build and download the Simulink model xpcosc to the target computer.
2 In the MATLAB Command Window, assign tg to the target computer and set the

StopTime property to 10.

tg = slrt;
tg.StopTime = 10;

3 Add a vector of two host scopes to the real-time application. Use the vector index to
switch from one scope to the other.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-26

sc = addscope(tg,'host', [1 2]);
4 Add signals 4 and 5 to both scopes.

addsignal(sc,[4 5]);
5 Set the NumSamples property for both scopes to 500 and the TriggerSample

property for both scopes to -1. With this property setting, each scope triggers the
next scope at the end of its 500 sample acquisition.

sc(1).NumSamples = 500;
sc(1).TriggerSample = -1;

sc(2).NumSamples = 500;
sc(2).TriggerSample = -1;

6 Set the TriggerMode property for scopes 1 and 2 to 'Scope'. Set the
TriggerScope property such that each scope triggers the other.

sc(1).TriggerMode = 'Scope';
sc(1).TriggerScope = 2;

sc(2).TriggerMode = 'Scope';
sc(2).TriggerScope = 1;

7 Set up storage for time, t, and signal, data acquisition.

t = [];
data = zeros(0, 2);

8 Start both scopes and the model.

start(sc);
start(tg);

Both scopes receive the same signals, 4 and 5.
9 To start acquiring data, explicitly trigger scope 1.

scNum = 1;
trigger(sc(scNum));

Setting scNum to 1 indicates that Scope 1 acquires data first.
10 Start acquiring data using the two scopes to double buffer the data.

while (1)

 Minimize Data Gaps with Two Scopes

11-27

 % Busy wait until this scope has finished acquiring 500 samples
 % or the model stops (scope is interrupted).
 while ~(strcmp(sc(scNum).Status, 'Finished') || ...
 strcmp(sc(scNum).Status, 'Interrupted'))
 end

 % Stop buffering data when the model stops.
 % Pause to be certain that the status property has been updated.

 pause(0.1)

 if strcmp(tg.Status, 'stopped')
 break
 end

 % Save the data.
 t(end + 1 : end + 500) = sc(scNum).Time;
 data(end + 1 : end + 500, :) = sc(scNum).Data;

 % Restart this scope.
 start(sc(scNum));

 % Switch to the next scope.
 if(scNum == 1) scNum = 2;
 else scNum = 1;
 end

end

11 When done, remove the scopes.

% Remove the scopes we added.
remscope(tg,[1 2]);

12 Plot the data.

plot(t,data);
grid on;
legend('Signal 4','Signal 5');

11 Real-Time Applications and Scopes in the MATLAB Interface

11-28

Following is a complete code listing for the preceding double-buffering data acquisition
procedure. After you download the model (xpcosc) to the target computer, you can copy
and paste this code into a MATLAB file and run it. Communication between the
development and target computers must be fast enough to transmit the entire set of
samples before the next acquisition cycle starts. In a similar way, you can use more than
two scopes to implement a triple- or quadruple-buffering scheme.

 Minimize Data Gaps with Two Scopes

11-29

% Assumes model xpcosc program text has been
% built and loaded on the target computer.

% Attach to the target computer and set StopTime to 10 sec.
tg = slrt;
tg.StopTime = 10;

% Add two host scopes.
sc = addscope(tg,'host', [1 2]);

% [4 5] are the signals of interest. Add to both scopes.
addsignal(sc,[4 5]);

% Each scope triggers the next scope at end of a 500 sample acquisition.
sc(1).NumSamples = 500;
sc(1).TriggerSample = -1;

sc(2).NumSamples = 500;
sc(2).TriggerSample = -1;

sc(1).TriggerMode = 'Scope';
sc(1).TriggerScope = 2;

sc(2).TriggerMode = 'Scope';
sc(2).TriggerScope = 1;

% Initialize time and data log.
t = [];
data = zeros(0, 2);

% Start the scopes and the model.
start(sc);
start(tg);

% To start the capture, explicitly trigger scope 1.
scNum = 1;
trigger(sc(scNum));

% Use the two scopes as a double buffer to log the data.
while (1)

 % Busy wait until this scope has finished acquiring 500 samples
 % or the model stops (scope is interrupted).
 while ~(strcmp(sc(scNum).Status, 'Finished') || ...
 strcmp(sc(scNum).Status, 'Interrupted'))
 end

 % Stop buffering data when the model stops.
 % Pause to be certain that the status property has been updated.

 pause(0.1)

 if strcmp(tg.Status, 'stopped')
 break
 end

11 Real-Time Applications and Scopes in the MATLAB Interface

11-30

 % Save the data.
 t(end + 1 : end + 500) = sc(scNum).Time;
 data(end + 1 : end + 500, :) = sc(scNum).Data;

 % Restart this scope.
 start(sc(scNum));

 % Switch to the next scope.
 if(scNum == 1) scNum = 2;
 else scNum = 1;
 end

end

% Remove the scopes we added.
remscope(tg,[1 2]);

% Plot the data.
plot(t,data);
grid on;
legend('Signal 4','Signal 5');

 Minimize Data Gaps with Two Scopes

11-31

Logging Signal Data with File
System Objects

• “File System Basics” on page 12-2
• “Using SimulinkRealTime.fileSystem Objects” on page 12-5

12

File System Basics
Simulink Real-Time file scopes create files on the target computer. To work with these
files from the development computer, see SimulinkRealTime.fileSystem. The
SimulinkRealTime.fileSystem object allows you to perform file system-like
operations on the target computer file system.

Note: The SimulinkRealTime.fileSystem object will be removed in a future release.
See the release note for file system commands to use instead. These commands use the
SimulinkRealTime.openFTP function and the functions for the MATLAB ftp object.

You cannot direct the scope to write the data to a file on the Simulink Real-Time
development computer. When the software has written the signal data file to the target
computer, you can access the contents of the file from the development computer.

The software can write data files to:

• Hard drive — The target computer hard drive supports a serial ATA (SATA) drive. The
Simulink Real-Time software supports file systems of type FAT-32 only.

Check that the hard drive is not cable-selected and that the target computer can
detect it. The maximum file size is limited by the FAT-32 file system type.

A Simulink Real-Time file scope can access the target computer hard drive, provided it
is formatted with the FAT-32 file system. Simulink Real-Time ignores other file
systems.

Note In a future release, the SecondaryIDE target setting will be read-only and set
to 'off'.

• ERAM drive — If the target computer has more than 4 GB of RAM, the kernel
automatically formats the excess memory as an extended RAM (ERAM) drive. The
kernel assigns the ERAM drive the drive letter 'H:'. Use the ERAM drive when you
need faster file I/O than you can achieve with other drive types.

The limitations for hard drives also apply to the ERAM drive.
• USB drive — To write data files to a USB drive, you must set the USB Support

property in Simulink Real-Time.
• 3.5-inch disk drive – Writing data files to a 3.5-inch disk drive is considerably slower

than writing to a hard drive.

12 Logging Signal Data with File System Objects

12-2

There are the following limitations:

• You can have at most 128 files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name in the operating system on the target computer can have a

maximum of 260 characters. If the file name is longer than eight-dot-three format
(eight character file name, period, three character extension), the operating system
represents the file name in truncated form (for example, six characters followed by
'~1'). MATLAB commands can access the file using the fully qualified file name or the
truncated representation of the name. Some block parameters, such as the Scope
block filename parameter, require 8.3 format for the file name.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

You can access signal data files, or other target computer system files, in one of the
following ways:

• If running the target computer standalone, you can access a file by restarting the
target computer under an operating system such as DOS. You can access the file
through the operating system utilities.

• If running the target computer linked to a development computer, you can access the
target computer file system from the development computer using a
SimulinkRealTime.fileSystem function.

You can perform file transfer operations using the functions
SimulinkRealTime.copyFileToHost and SimulinkRealTime.copyFileToTarget.

You can perform file system-like tasks using functions such as fopen and fread on the
signal data file. File system functions work like the corresponding MATLAB file I/O
functions.

The SimulinkRealTime.fileSystem class also includes file system utilities that allow
you to collect target computer file system information for the disk and disk buffers.

This topic focuses primarily on using the SimulinkRealTime.fileSystem functions to
work with target computer data files that you generate from a real-time Scope of type
file.

 File System Basics

12-3

For an example of how to perform data logging with the Simulation Data Inspector, see
“Data Logging With Simulation Data Inspector (SDI)” on page 15-241.

12 Logging Signal Data with File System Objects

12-4

Using SimulinkRealTime.fileSystem Objects

In this section...
“Copying Files from the Target Computer to the Development Computer” on page 12-6
“Copying Files from the Development Computer to the Target Computer” on page 12-7
“Accessing File Systems on a Specific Target Computer” on page 12-7
“Reading the Contents of a File on the Target Computer” on page 12-8
“Removing a File from the Target Computer” on page 12-10
“Getting a List of Open Files on the Target Computer” on page 12-11
“Getting Information About a File on the Target Computer” on page 12-12
“Getting Information About a Disk on the Target Computer” on page 12-12

The fileSystem object enables you to work with the target computer file system from
the development computer. You enter target object functions in the MATLAB window on
the development computer or use scripts. The fileSystem object has functions that
allow you to use

• cd to change folders
• dir to list the contents of the current folder
• mkdir to make a folder
• pwd to get the current working folder path
• rmdir to remove a folder
• diskinfo to get information about the specified disk
• fclose to close a file (similar to MATLAB fclose)
• fileinfo to get information about a particular file
• filetable to get information about files in the file system
• fopen to open a file (similar to MATLAB fopen)
• fread to read a file (similar to MATLAB fread)
• fwrite to write a file (similar to MATLAB fwrite)
• getfilesize to get the size of a file in bytes
• removefile to remove a file from the target computer

 Using SimulinkRealTime.fileSystem Objects

12-5

Note: The SimulinkRealTime.fileSystem object will be removed in a future release.
See the release note for file system commands to use instead. These commands use the
SimulinkRealTime.openFTP function and the functions for the MATLAB ftp object.

Useful global functions:

• SimulinkRealTime.copyFileToHost to retrieve a file from the target computer to
the development computer

• SimulinkRealTime.copyFileToTarget to place a file from the development
computer on the target computer

• SimulinkRealTime.utils.getFileScopeData, to interpret the raw data from the
fread function

These procedures assume that the target computer has a signal data file created by a
Simulink Real-Time file scope. This file has the path name C:\data.dat.

There are the following limitations:

• You can have at most 128 files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name in the operating system on the target computer can have a

maximum of 260 characters. If the file name is longer than eight-dot-three format
(eight character file name, period, three character extension), the operating system
represents the file name in truncated form (for example, six characters followed by
'~1'). MATLAB commands can access the file using the fully qualified file name or the
truncated representation of the name. Some block parameters, such as the Scope
block filename parameter, require 8.3 format for the file name.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

Copying Files from the Target Computer to the Development
Computer
You can copy a data file from the target computer to the development computer using a
SimulinkRealTime package function on the development computer.

12 Logging Signal Data with File System Objects

12-6

For example, to retrieve a file named data.dat from the target computer C:\ drive
(default):

1 If you have not already done so, in the MATLAB window, type the following to assign
the default SimulinkRealTime.target object to a variable.

tg = slrt;
2 Type

SimulinkRealTime.copyFileToHost(tg,'data.dat')

This command retrieves the file and saves that file to the variable data. This content
is in the Simulink Real-Time file format.

Copying Files from the Development Computer to the Target
Computer
You can copy a file from the development computer to the target computer using a
SimulinkRealTime package function on the development computer.

For example, to copy a file named data2.dat from the development computer to the
target computer C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following to assign
the default SimulinkRealTime.target object to a variable.

tg = slrt;
2 Type the following to save that file to the variable data.

SimulinkRealTime.copyFileToTarget(tg,'data2.dat')

Accessing File Systems on a Specific Target Computer
You can access specific target computer files from the development computer for the
SimulinkRealTime.fileSystem object.

Use the SimulinkRealTime.fileSystem creator function. If your system has multiple
targets, you can access specific target computer files from the development computer for
the SimulinkRealTime.fileSystem object.

For example, to list the name of the current folder of target computer 'TargetPC1':

 Using SimulinkRealTime.fileSystem Objects

12-7

1 In the MATLAB window, type a command like the following to assign the
SimulinkRealTime.fileSystem object for the default computer to a variable.

fsys = SimulinkRealTime.fileSystem;
2 Type

dir(fsys)

Alternatively, you can use the SimulinkRealTime.target constructor to construct a
target object for a specific computer, then use that target object as an argument to
SimulinkRealTime.fileSystem.

1 In the MATLAB window, type a command like the following to assign the
SimulinkRealTime.target object for target computer 'TargetPC1' to a
variable.

tg1 = SimulinkRealTime.target('TargetPC1');
2 To assign the SimulinkRealTime.fileSystem object to a variable, type:

fsys = SimulinkRealTime.fileSystem(tg1);
3 Type

dir(fsys)

Reading the Contents of a File on the Target Computer
You can read the contents of a data file from the target computer by using
SimulinkRealTime.fileSystem functions on the development computer. Use this
procedure as an alternative to the method described in “Configure File Scopes with
MATLAB Language” on page 6-128.

To run a SimulinkRealTime.fileSystem object function, use the
function_name(fs_object, argument_list) syntax. For example, to retrieve the
contents of a file named data.dat from the target computer C:\ drive (default):

1 If you have not already done so, in the MATLAB window, type the following to assign
the SimulinkRealTime.fileSystem object to a variable.

fsys = SimulinkRealTime.fileSystem;
2 Type

h = fopen(fsys, 'data.dat');

12 Logging Signal Data with File System Objects

12-8

This command opens the file data.dat for reading and assigns the file identifier to
h.

3 Type

data2 = fread(fsys,h);

This command reads the file data.dat and stores the contents of the file to data2.
This content is in the Simulink Real-Time file format.

4 Type

fclose(fsys, h)

This command closes the file data.dat.

Before you can view or plot the contents of this file, you must convert the contents. See
“Converting Simulink Real-Time File Format Content to Double Precision Data” on page
12-9.

Converting Simulink Real-Time File Format Content to Double Precision Data

The Simulink Real-Time software provides the function
SimulinkRealTime.utils.getFileScopeData to convert Simulink Real-Time file
format content (in bytes) to double precision data representing the signals and
timestamps. The SimulinkRealTime.utils.getFileScopeData function takes in
data from a file in Simulink Real-Time format. The data must be a vector of bytes (uint8).
To convert the data to uint8, use a command like the following:

data2 = uint8(data2');

This section assumes that you have a variable, data2, that contains data in the Simulink
Real-Time file format (see “Reading the Contents of a File on the Target Computer” on
page 12-8).

1 In the MATLAB window, change folder to the folder that contains the Simulink Real-
Time format file.

2 Type

new_data2 = SimulinkRealTime.utils.getFileScopeData(data2);

SimulinkRealTime.utils.getFileScopeData converts the format of data2
from the Simulink Real-Time file format to an array of bytes. It also creates a
structure for that file in new_data2, of which one of the elements is an array of

 Using SimulinkRealTime.fileSystem Objects

12-9

doubles, data. The data member is also appended with a timestamp vector. The data
is returned as doubles, which represent the real-world values of the original Simulink
signals at the specified times during target execution.

You can view or examine the signal data. You can also plot the data with
plot(new_data2.data).

If you use Simulink Real-Time in standalone mode, you can extract the data from the data
file:

• First determine the file header size. To obtain the file header size, ignore the first 8
bytes of the file. The next 4 bytes store the header size as an unsigned integer.

• After the header size number of bytes, the file stores the signals sequentially as
doubles. For example, assume that the scope has three signals, x, y, and z. Assume
that x[0] is the value of x at sample 0, x[1] is the value at sample 1, and so forth.
Also assume t[0], t[1] are the simulation time values at samples 0, 1, and so forth.
The file saves the data using the following pattern:

x[0] y[0] z[0] t[0] x[1] y[1] z[1] t[1] x[2] y[2] z[2] t[2]...
x[N] y[N] z[N] t[N]

N is the number of samples acquired. The file saves x, y, z, and t as doubles at 8 bytes
each.

Removing a File from the Target Computer
You can remove a file from the target computer by using Simulink Real-Time functions on
the development computer for the SimulinkRealTime.fileSystem object. If you have
not already done so, close this file first with fclose.

To run a SimulinkRealTime.fileSystem object function, use the
function_name(fs_object, argument_list) syntax. For example, to remove a file
named data2.dat from the target computer C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following to assign
the SimulinkRealTime.fileSystem object to a variable.

fsys = SimulinkRealTime.fileSystem;
2 Type the following to remove the specified file from the target computer.

removefile(fsys,'data2.dat')

12 Logging Signal Data with File System Objects

12-10

Getting a List of Open Files on the Target Computer
You can get a list of open files on the target computer file system by using
SimulinkRealTime.fileSystem object functions on the development computer. The
target computer file system limits the number of open files you can have to eight. Use this
list to identify files that you can close.

To run a SimulinkRealTime.fileSystem object function, use the
function_name(fs_object, argument_list) syntax. For example, to get a list of
open files for the file system object fsys,

1 If you have not already done so, in the MATLAB window, type the following to assign
the SimulinkRealTime.fileSystem object to a variable.

fsys = SimulinkRealTime.fileSystem;
2 Type

filetable(fsys)

If the file system has open files, a list like the following is displayed:

ans =
Index Handle Flags FilePos Name
--
 0 00060000 R__ 8512 C:\DATA.DAT
 1 00080001 R__ 0 C:\DATA1.DAT
 2 000A0002 R__ 8512 C:\DATA2.DAT
 3 000C0003 R__ 8512 C:\DATA3.DAT
 4 001E0001 R__ 0 C:\DATA4.DA

3 The table returns the open file handles in hexadecimal. To convert a handle to one
that other SimulinkRealTime.fileSystem functions, such as fclose, can use,
use the hex2dec function. For example,

h1 = hex2dec('001E0001')

h1 =
1966081

4 To close that file, use the SimulinkRealTime.fileSystem fclose function. For
example,

fclose(fsys, h1)

 Using SimulinkRealTime.fileSystem Objects

12-11

Getting Information About a File on the Target Computer
You can display information for a file on the target computer file system by using
SimulinkRealTime.fileSystem object functions on the development computer.

To run a SimulinkRealTime.fileSystem object function, use the
function_name(fs_object, argument_list) syntax. For example, to display the
information for the file identifier fid1,

1 If you have not already done so, in the MATLAB window, type the following to assign
the SimulinkRealTime.fileSystem object to a variable.

fsys = SimulinkRealTime.fileSystem;
2 Type

fid1 = fopen(fsys, 'data.dat');

This command opens the file data.dat for reading and assigns the file identifier to
fid1.

3 Type

fileinfo(fsys, fid1)

This returns disk information like the following for the C:\ drive file system.

ans =
 FilePos: 0
 AllocatedSize: 12288
 ClusterChains: 1
 VolumeSerialNumber: 1.0450e+009
 FullName: 'C:\DATA.DAT'

Getting Information About a Disk on the Target Computer
You can display information for a disk on the target computer file system by using
SimulinkRealTime.fileSystem object functions on the development computer.

To run a SimulinkRealTime.fileSystem object function, use the
function_name(fs_object, argument_list) syntax. For example, to display the
disk information for the C:\ drive,

1 If you have not already done so, in the MATLAB window, type the following to assign
the SimulinkRealTime.fileSystem object to a variable.

12 Logging Signal Data with File System Objects

12-12

fsys = SimulinkRealTime.fileSystem;
2 Type

diskinfo(fsys, 'C:\');

This returns disk information like the following for the C:\ drive file system.

ans =

 struct with fields:

 DriveLetter: 'C'
 Label: 'FREEDOS'
 Reserved: ' '
 SerialNumber: -857442364
 FirstPhysicalSector: 63
 FATType: 32
 FATCount: 2
 MaxDirEntries: 0
 BytesPerSector: 512
 SectorsPerCluster: 64
 TotalClusters: 1831212
 BadClusters: 0
 FreeClusters: 1827614
 Files: 938
 FileChains: 942
 FreeChains: 1
 LargestFreeChain: 1827614
 DriveType: DRIVE_FIXED

 Using SimulinkRealTime.fileSystem Objects

12-13

Deploy the MATLAB Application as a
Standalone Executable

• “MATLAB Runtime Setup” on page 13-2
• “Deploy MATLAB Application to Control Real-Time Application” on page 13-4

13

MATLAB Runtime Setup
As part of developing and testing your model, you can write MATLAB applications for:

• Parameter extreme value testing
• Regression testing
• Putting the model into a consistent state for testing another part of the system

To run an application on a Windows computer that does not have MATLAB installed, use
MATLAB Compiler to deploy the application as a standalone executable.

To deploy a MATLAB application, first set up MATLAB Runtime:

1 Open MATLAB.
2 To find the MCRInstaller program, type:

mcrinstaller

The Command Window displays output similar to this output: C:\Program Files
\MATLAB\R2017b\toolbox\compiler\deploy... \win64\MCRInstaller.exe

3 Copy and paste the full path to the MCRInstaller program into the Windows Run
text box.

4 Press Enter, and then follow the prompts.

Place the MATLAB Runtime in the default location, for example:

C:\Program Files\MATLAB\MATLAB Runtime

From the installation dialog box, copy and paste the location where the installer
places the MATLAB Runtime binary files:

C:\Program Files\MATLAB\MATLAB Runtime\v93
5 Close MATLAB and open a Windows command prompt window.
6 Type the following command:

set PATH=C:\Program Files\MATLAB\MATLAB Runtime\v93\bin\win64;%PATH%

This command sets the MATLAB Runtime path only for the command prompt window
within which you typed it. To make this environment variable setting visible
throughout the operating system, see the Windows documentation.

13 Deploy the MATLAB Application as a Standalone Executable

13-2

See Also

More About
• “Deploy MATLAB Application to Control Real-Time Application” on page 13-4

 See Also

13-3

Deploy MATLAB Application to Control Real-Time
Application

Required Products: Simulink, Simulink Real-Time, MATLAB Compiler, and MATLAB
Compiler SDK™

This example shows how to deploy a test script as a standalone executable by using
MATLAB Compiler. The test script performs a frequency-response test of the xpcosc
model. Using this information, in the design phase, you can modify the internal
parameters of the model to meet your frequency requirements. In the production phase,
you can bin manufactured parts based on frequency response.

The test script is slrt_freq_sweep_test.m (open(fullfile(matlabroot,
'help','toolbox','xpc','examples','slrt_freq_sweep_test.m'))).

Prerequisites
This procedure assumes that you have:

1 Completed the steps in “MATLAB Runtime Setup” on page 13-2.
2 Opened MATLAB from the Windows command prompt window within which you

performed MATLAB run-time setup.
3 Configured TCP/IP communication between the development and target computers,

recorded the required settings in the test script slrt_freq_sweep_test.m, and
saved the script in a working folder.

4 Built the xpcosc real-time application.

Package the MATLAB Application
1 Open Apps > Application Compiler.
2 Enter the name of the application as slrt_freq_sweep_test. Add summary

information as required.
3 To save the project, click Save. Save the project under a name such as

slrt_freq_sweep_test.prj.
4 Click the Add main file button , and then navigate to the file

slrt_freq_sweep_test.m.

13 Deploy the MATLAB Application as a Standalone Executable

13-4

5 Under PACKAGING OPTIONS, select the Runtime included in package check
box.

6
Click the Package button .

The compiler generates the application and opens the slrt_freq_sweep_test
folder in Windows Explorer.

7 To save the project, click Save.

 Deploy MATLAB Application to Control Real-Time Application

13-5

Run the MATLAB Application
1 In Windows Explorer, navigate to slrt_freq_sweep_test

\for_redistribution_files_only.
2 Copy the real-time application file (xpcosc.mldatx) into slrt_freq_sweep_test

\for_redistribution_files_only.

The application assumes that the model file is in the folder where you run the
application.

3 If you are connected to the target computer within MATLAB, close the connection.
Use the close(tg) command.

4 To run the application, click slrt_freq_sweep_test.exe.

The application runs and displays a plot for each frequency.

13 Deploy the MATLAB Application as a Standalone Executable

13-6

After the run is complete, the application displays a text box containing the test
results.

 Deploy MATLAB Application to Control Real-Time Application

13-7

See Also

More About
• “Write Deployable MATLAB Code” (MATLAB Compiler)

13 Deploy the MATLAB Application as a Standalone Executable

13-8

Automated Test with Simulink Test

14

Test Real-Time Application
This example shows how to perform a frequency-response test of the model
ex_slrt_slt_osc (open_system(docpath(fullfile(docroot, 'toolbox',
'xpc', 'examples', 'ex_slrt_slt_osc')))).

14 Automated Test with Simulink Test

14-2

 Test Real-Time Application

14-3

Using this information, in the design phase, you can modify the internal parameters of the
model to meet your frequency requirements. In the production phase, you can bin
manufactured parts based on frequency response.

The figure shows representative output from a real-time application running on a target
computer. At low frequencies, the output of the Integrator1 block settles to the same
value as the output of the Signal Generator block. At high frequencies, the output of the
Integrator1 block is still ringing at the end of each pulse.

14 Automated Test with Simulink Test

14-4

The test determines the highest frequency at which the output values of the Integrator
and Signal Generator blocks are within a specified criterion of each other. The test uses
the model itself as a signal source and uses a test harness to compare the outputs of the
Integrator and Signal Generator blocks.

 Test Real-Time Application

14-5

Step 1. Set Model Configuration Parameters

1 Open model ex_slrt_slt_osc in a writable folder.
2 Open the Configuration Parameters. On the Real-Time tab, click Hardware

Settings.
3 Select Model Referencing > Total number of instances allowed per top model

> One.
4 Select Data Import/Export > Format > Structure with time.
5 Select Data Import/Export > Format > Time.
6 Select Data Import/Export > Format > Output.
7 De-select Data Import/Export > Format > States.
8 De-select Data Import/Export > Format > Final states.
9 De-select Data Import/Export > Format > Signal logging.
10 De-select Data Import/Export > Format > Data stores.
11 De-select Data Import/Export > Format > Log Dataset data to file.

Step 2. Create Test Harness

1 On the Apps tab, click Simulink Test.
2 On the Test tab, click Add Test Harness for Model. The software creates a test

harness with the default name ex_slrt_slt_osc_Harness1.
3 In the Basic Properties pane, select the Save Test Harnesses Externally check box.
4 For the Input to Component under Test, select None.
5 For the Output from Component under Test, select Outport.
6 Select the Add separate assessment block check box.
7 Select the Open harness after creation check box.
8 Take the defaults in the remaining panes.

14 Automated Test with Simulink Test

14-6

8. Click OK.

The test harness looks like this figure.

 Test Real-Time Application

14-7

The example model ex_slrt_slt_osc stores the test harness within the model. To
access the test harness from the example model:

1 In Simulink Editor, on the Test tab, click Manage Test Harnesses.
2 Click ex_slrt_slt_osc_Harness1.
3 To return to the example model, select it in the perspectives view in the lower right

corner of the test harness.

Step 3. Set Test Harness Configuration Parameters

1 Open test harness ex_slrt_slt_osc_Harness1.
2 Open the Configuration Parameters. On the Real-Time tab, click Hardware

Settings.
3 Select Model Referencing > Total number of instances allowed per top model

> One.
4 Select Data Import/Export > Format > Structure with time.
5 Select Data Import/Export > Format > Time.
6 Select Data Import/Export > Format > Output.
7 De-select Data Import/Export > Format > States.

14 Automated Test with Simulink Test

14-8

8 De-select Data Import/Export > Format > Final states.
9 De-select Data Import/Export > Format > Signal logging.
10 De-select Data Import/Export > Format > Data stores.
11 De-select Data Import/Export > Format > Log Dataset data to file.

Step 4. Configure Test Harness

1 Open the Test Assessment block.
2 To simplify the test assessment configuration, in the Input symbol list, replace input

Outport with inputs Int1 and SigGen.
3 In ex_slrt_slt_osc_Harness1, connect a Demux block to ex_slrt_slt_osc/

Outport.
4 In the Demux block dialog box, set Number of outputs to 2.
5 To make the Demux outputs visible to the Test Assessment block, connect unitary

Gain blocks to each of the Demux block outputs.
6 Connect the top Demux block output to Test Assessment/Int1 and the bottom

output to Test Assessment/SigGen.

 Test Real-Time Application

14-9

Step 5. Configure Simulink Parameters

1 Open the Model Explorer. On the Modeling tab, pull down the Design section and
click Model Explorer.

2 Click node ex_slrt_slt_osc_Harness1 > Model Workspace.
3 In the toolbar, click the Add Simulink Parameter button.
4 Add the following data object:

• Name — Criterion
• Value — 0
• DataType — double
• Storage Class — ExportedGlobal

5. In a similar manner, add Simulink parameters w_open and w_close. Because these
parameters are in the ex_slrt_slt_osc_Harness1 model workspace as model
parameters, you access them by name directly, without model hierarchy.

14 Automated Test with Simulink Test

14-10

6. Save the model.

Step 6. Prepare Test Assessment Steps

1. Open the Test Assessment block

2. Add these parameters to the Parameter symbol list:

• Criterion
• w_open
• w_close

3. To add a step, in the Step column, move the cursor to the top row, click Add step
after, and type:

CheckSetting

 Test Real-Time Application

14-11

4. Right-click step CheckSetting and set the When decomposition check box.

5. To add a substep to CheckSetting, click Add sub-step, and type:

 Hi when (SigGen > 0)

The when expression selects one half of the waveform.

6. Right-click substep Hi when and set the When decomposition check box.

7. To substep Hi when, add substep:

 HiCheck when ((et >= w_open) && (et <= w_close))
 verify((abs(Int1) >= abs(SigGen) * (1.0 - Criterion)) && ...
 (abs(Int1) <= abs(SigGen) * (1.0 + Criterion)));

The when expression selects the time window for testing the acceptance criterion. The
verify command tests the acceptance criterion.

8. In a similar manner, to step CheckSetting, add substep:

 Lo when (SigGen < 0)

9. To substep Lo when, add substep:

 LoCheck when ((et >= w_open) && (et <= w_close))
 verify((abs(Int1) >= abs(SigGen) * (1.0 - Criterion)) && ...
 (abs(Int1) <= abs(SigGen) * (1.0 + Criterion)));

10. Right-click substep Lo when and set the When decomposition check box.

11. To satisfy the requirements of When decomposition, remove the default Run step
and insert DefaultStep substeps after steps CheckSetting, Hi when, and Lo when.
When decomposition requires at least two steps at each level of nesting, and one
nondecomposed step at the end of each list of steps.

14 Automated Test with Simulink Test

14-12

Step 7. Initialize Test Suite

1 Click on the ex_slrt_slt_osc subsystem.
2 On the Apps tab, click Simulink Test.
3 On the Test tab, click Test Manager.
4 Select New > Test File.
5 Name the test file realtimetest.
6 Right-click the test file and select New > Real-Time Test.
7 In the new real-time test dialog box, enter Simulation in the Test Type field.
8 Click Create.
9 Rename the new test suite to realtimesuite.
10 Rename the new test case to frequencysweep.

Step 8. Initialize System Under Test

1 In Test Manager, select node frequencysweep.

 Test Real-Time Application

14-13

2 Select tab System Under Test.
3 Set Load Application From to Model.
4 Set Model to ex_slrt_slt_osc.
5 Set Target Computer to TargetPC1.
6 In tab Test Harness, set Harness to ex_slrt_slt_osc_Harness1.
7 In tab Simulation Settings Overrides, select the Stop Time check box.
8 Take the defaults for the other fields.

Step 9. Initialize Parameter Overrides

1 In Test Manager, select tab Parameter Overrides.
2 Click the Add button. A dialog box opens containing a list of parameters. If

parameters are not visible, click the Refresh line at the top of the dialog box. The
refresh builds the model and uploads the model and block parameters from
ex_slrt_slt_osc_Harness1 and ex_slrt_slt_osc.

3 Open Parameter Set 1 and select the Criterion, Frequency, w_close, and w_open
check boxes. Leave the other check boxes cleared.

14 Automated Test with Simulink Test

14-14

Step 10. Create Scripted Iterations

To configure and control iterated runs of the test harness, a number of constants and
variables provide input.

Test harness constants include:

• cStartFreq = 15.0 Start frequency of parameter sweep.
• cStopFreq = 25.0 End frequency of parameter sweep.
• cFreqIncr = 1.0 Frequency increment.
• cWOpen = 0.90 Start of time window for evaluating criterion.
• cWClose = 0.99 End of time window for evaluating criterion.
• cCriterion = 0.025 Maximum normalized amplitude difference between Signal

Generator and Integrator1 within the time window.

Test harness variables include:

 Test Real-Time Application

14-15

• vfreq Frequency at each iteration.
• vw_open Window opens once in each half-period.
• vw_close Window closes once in each half-period.

1 In Test Manager, select tab Iterations > Scripted Iterations.
2 In the text box, enter the following code. To resize the Scripted Iterations text box,

click and drag the lower-right corner of the box.

% Initialize constants
cStartFreq = 15.0;
cStopFreq = 25.0;
cFreqIncr = 1.0;
cWOpen = 0.90;
cWClose = 0.99;
cCriterion = 0.025;

% Loop through test frequencies
for vfreq = cStartFreq:cFreqIncr:cStopFreq

 % Create a new iteration
 testItr = sltest.testmanager.TestIteration();

 % Calculate the time window
 half_period = 0.5 * (1.0/vfreq);
 vw_open = half_period * cWOpen;
 vw_close = half_period * cWClose;

 % Set the parameters for the iteration
 testItr.setVariable('Name','Frequency','Source', ...
 'ex_slrt_slt_osc/Signal Generator','Value',vfreq);
 testItr.setVariable('Name','w_open','Source', ...
 '','Value', vw_open);
 testItr.setVariable('Name','w_close','Source', ...
 '','Value', vw_close);
 testItr.setVariable('Name','Criterion','Source', ...
 '','Value', cCriterion);

 % Name and add the iteration to the testcase
 str = sprintf('%.0f Hz', vfreq);
 addIteration(sltest_testCase, testItr, str);
end

14 Automated Test with Simulink Test

14-16

Step 11. Run Test

1 Build and download ex_slrt_slt_osc to the target computer.
2 In Test Manager, click the Run button.
3 To view test results, in the left column, click Results and Artifacts. In this case, the

test failed at iteration 23 Hz.
4 To view the failing results, open nodes 23 Hz > Verify Statements and 23 Hz >

Sim Output (ex_slrt_slt_osc).

 Test Real-Time Application

14-17

Step 12. Display Results

1 In the Simulation Data Inspector pane, select the Layout button.
2 Select two horizontal displays.
3 In the Simulation Data Inspector top display, select the two Out check boxes and the

top Test Assessment check box. This assessment corresponds to the HiCheck
substep.

4 In the bottom display, select the two Out check boxes and the bottom Test
Assessment check box. This assessment corresponds to the LoCheck substep.

5 Click the Zoom in Time button and select the range 4.00-4.1.

In the top display, the vertical red line near 4.04 followed by a horizontal green line
shows that the HiCheck test failed briefly before succeeding. In the bottom display, the
vertical red spike near 4.02 followed by a horizontal green line shows that the LoCheck
test failed briefly before succeeding.

14 Automated Test with Simulink Test

14-18

See Also
Test Assessment | Test Sequence

 See Also

14-19

More About
• “Test Models in Real Time” (Simulink Test)
• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_slt_osc')))
• “Test Models in Real Time” (Simulink Test)
• “Reuse Desktop Test Cases for Real-Time Testing” (Simulink Test)

14 Automated Test with Simulink Test

14-20

Troubleshooting

21

Simulink Real-Time Examples

15

Parameter Tuning and Data Logging
This example shows how to do real-time parameter tuning and data logging with
Simulink® Real-Time™. After the script builds and downloads the oscillator model,
xpcosc, to the target computer, it makes multiple runs with the gain 'Gain1/Gain' changed
(tuned) before each run. The gain is swept from 0.1 to 0.7 in steps of 0.05. The parameter
index of 'Gain1/Gain' is retrieved from the Simulink Real-Time target object using the
function GETPARAMID.

The data logging capabilities of Simulink Real-Time are used to capture signals of interest
during each run. The logged signals are uploaded to the development computer and
plotted. Finally, a 3-D plot of the oscillator output vs. time vs. gain is displayed.

Check Connection Between Development and Target Computers

Use 'slrtpingtarget' to test the connection between the development and target
computers.

if ~strcmp(slrtpingtarget, 'success')
 error(message('xPCTarget:examples:Connection'));
end

Open, Build, and Download Model to the Target Computer

Open the oscillator model, xpcosc. Under the model's configuration parameter Simulink
Real-Time option settings, the system target file has been set to slrt.tlc. Building the
model will create an executable image, xpcosc.mldatx, that can be run on a computer
booted with the Simulink Real-Time kernel.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcosc'));

15 Simulink Real-Time Examples

15-2

Build the model and download the image, xpcosc.mldatx, to the target computer.

• Configure for a non-Verbose build.
• Build and download application.

set_param('xpcosc','RTWVerbose','off');
rtwbuild('xpcosc');
tg = slrt('TargetPC1');
load(tg,'xpcosc');

Starting Simulink Real-Time build procedure for model: xpcosc
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: xpcosc
Created MLDATX ..\xpcosc.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

Run Model, Sweep 'Gain' Parameter, Plot Logged Data

This code accomplishes a number of tasks.

 Parameter Tuning and Data Logging

15-3

Task 1: Create Target Object

Create the MATLAB® variable, tg, containing the Simulink Real-Time target object. This
object allows you to communicate with and control the target computer.

• Create a Simulink Real-Time target object.
• Set sample time to 250us.
• Set stop time to 0.2s.

Task 2: Run the Model and Plot Results

Run the model, sweeping through and changing the gain (damping parameter) before
each run. Plot the results as you go.

• Get index of parameter 'Gain1/Gain'
• Does the plot figure exist?
• If no, create figure
• If yes, make it the current figure

Task 3: Loop over damping factor z

• Set damping factor (Gain1/Gain)
• Start model execution
• Upload output and store in a matrix
• Upload time vector
• Plot data for current run

Task 4: Create 3-D Plot (Oscillator Output vs. Time vs. Gain)

• Create a plot of oscillator output vs. time vs. gain.
• Create 3-D plot

tg = slrt; % create target object
tg.SampleTime = 0.000250;
tg.StopTime = 0.2;
tPar = getparamid(tg, 'Gain1', 'Gain'); % run the model
figh = findobj('Name', 'parsweepdemo');
if isempty(figh)
 figh = figure;
 set(figh, 'Name', 'parsweepdemo', 'NumberTitle', 'off');

15 Simulink Real-Time Examples

15-4

else
 figure(figh);
end
y = []; flag = 0; % loop over damping factor
for z = 0.1 : 0.05 : 0.7
 if isempty(find(get(0, 'Children') == figh, 1)), flag = 1; break; end
 setparam(tg,tPar,2 * 1000 * z);
 start(tg);
 pause(2*tg.StopTime);
 outp = tg.OutputLog;
 y = [y, outp(:, 1)];
 t = tg.TimeLog;
 plot(t, outp(:, 1));
 set(gca, 'XLim', [t(1), t(end)], 'YLim', [-10, 10]);
 title(['parsweepdemo: Damping Gain = ', num2str(z)]);
 xlabel('Time'); ylabel('Output');
 drawnow;
end
if ~flag % create 3-D plot
 delete(gca);
 surf(t(1 : 200), 0.1 : 0.05 : 0.7, y(1 : 200, :)');
 colormap cool
 shading interp
 h = light;
 set(h, 'Position', [0.0125, 0.6, 10], 'Style', 'local');
 lighting gouraud
 title('parsweepdemo: finished');
 xlabel('Time'); ylabel('Damping Gain'); zlabel('Output');
end

 Parameter Tuning and Data Logging

15-5

Close Model

When done, close the model.

close_system('xpcosc',0);

15 Simulink Real-Time Examples

15-6

Signal Tracing With a Host Scope in Freerun Mode
This example shows how to do freerun signal tracing using an Simulink® Real-Time™
host scope. After the script builds and downloads the oscillator model, xpcosc, to the
target computer, it adds a scope of type 'host' to the real-time application and the signals
'Integrator1' and 'Signal Generator' to the scope. The application is started and the host
scope is used for data acquisition and display. Note:

• The model sample time is 250 usec.
• The scope is set to acquire 200 samples with a decimation factor of 4.
• This corresponds to a display length of 250e-6 * 200 * 4 = 0.2 seconds.

The scope is started in Freerun mode, and its status is monitored until it reaches the
'Finished' state. Next, the scope data is uploaded to the development computer and
plotted. This process repeats 25 times. After every fifth run, the damping gain 'Gain1/
Gain' is set to a new random value.

Check Connection Between Development and Target Computers

Use 'slrtpingtarget' to test the connection between the development and target
computers.

if ~strcmp(slrtpingtarget, 'success')
 error(message('xPCTarget:examples:Connection'));
end

Open, Build, and Download Model to the Target Computer

Open the oscillator model, xpcosc. Under the model's configuration parameter Simulink
Real-Time option settings, the system target file has been set to slrt.tlc. Hence, building
the model will create an executable image, xpcosc.mldatx, that can be run on a computer
booted with the Simulink Real-Time kernel.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcosc'));

 Signal Tracing With a Host Scope in Freerun Mode

15-7

Build the model and download the image, xpcosc.mldatx, to the target computer.

• Configure for a non-Verbose build.
• Build and download application.

set_param('xpcosc','RTWVerbose','off');
rtwbuild('xpcosc');
tg = slrt('TargetPC1');
load(tg,'xpcosc');

Starting Simulink Real-Time build procedure for model: xpcosc
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: xpcosc
Created MLDATX ..\xpcosc.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

Run Model, Randomize 'Gain' Parameter, Plot Host Scope Data

This code accomplishes a number of tasks.

15 Simulink Real-Time Examples

15-8

Task 1: Create Target Object

Create the MATLAB® variable, tg, containing the Simulink Real-Time target object. This
object allows you to communicate with and control the target computer.

• Create a Simulink Real-Time target object
• Set sample time to 250us
• Set stop time to a high value (10000s)
• Start model execution

Task 2: Create, configure, and plot to the host scope during each run.

• Get index of parameter 'Gain1/Gain'
• Get index of signal 'Integrator1'
• Get index of signal 'Signal Generator'
• Define (add) a host scope object
• Add signals to signal list of scope object
• Set number of samples
• Set decimation factor
• Set trigger mode

Task 3: Check for plot figure.

Does the plot figure exist?

• If no, create figure
• If yes, make it the current figure

Task 4: Loop to acquire 25 data packages from the scope object.

• Change parameter Gain1/Gain every fifth acquisition loop to a random value between
0 and 2000.

• Start scope object
• Wait until scope-object has 'finished' acquiring the data.

Task 5: Create time vector, upload scope data and display it.

• Upload time vector

 Signal Tracing With a Host Scope in Freerun Mode

15-9

• Upload acquired data and plot

tg = SimulinkRealTime.target; % create target object
tg.SampleTime = 0.000250;
tg.StopTime = 10000;
start(tg);
tPar = getparamid(tg, 'Gain1', 'Gain'); % create host scope and plot
signals(1) = getsignalid(tg, 'Integrator1');
signals(2) = getsignalid(tg, 'Signal Generator');
sc = addscope(tg, 'host'); % define host scope object
addsignal(sc, signals);
sc.NumSamples = 200; % set number of samples and other settings
sc.Decimation = 4;
sc.TriggerMode = 'Freerun';
figh = findobj('Name', 'scfreerundemo'); % check for plot figure
if isempty(figh)
 figh = figure;
 set(figh, 'Name', 'scfreerundemo', 'NumberTitle', 'off');
else
 figure(figh);
end;
m = 1; flag = 0; % loop to acquire data
for n = 1 : 25
 if isempty(find(get(0, 'Children') == figh, 1)), flag = 1; break; end
 if ~m
 setparam(tg, tPar, 2*1000*rand); % change gain periodically
 end
 m = rem(m + 1, 5);
 start(sc); % start scope object
 while ~strcmpi(sc.Status,'finished')
 end; % wait until scope is finished
 t = sc.Time; % create time vector and display it
 plot(t,sc.Data);
 title(['scfreerundemo: ',num2str(n),' of 25 data packages']);
 set(gca,'XLim',[t(1), t(end)]);
 set(gca,'YLim',[-10, 10]);
 drawnow;
end
if ~flag, title('scfreerundemo: finished'); end

15 Simulink Real-Time Examples

15-10

Stop and Close Model

When done, stop the application and close the model.

• Stop model
• Close model

stop(tg);
close_system('xpcosc',0);

 Signal Tracing With a Host Scope in Freerun Mode

15-11

Signal Tracing Using Software Triggering
This example shows how to trace a signal using a software triggered Simulink® Real-
Time™ host scope. After the script builds and downloads the oscillator model, xpcosc, to
the target computer, it adds a scope of type 'host' to the real-time application and the
signals 'Integrator1' and 'Signal Generator' to the scope. The scope is then configured in
the software trigger mode.

Once the trigger is initiated, the scope is monitored to determine when its data
acquisition is complete. Next, the scope data is uploaded to the development computer
and plotted. This process repeats 25 times. The software trigger is re-enabled each run
after a random pause (between 0 and 4 seconds). After every fifth run, the damping gain
'Gain1/Gain' is set to a new random value (between 0 and 2000).

Check Connection Between Development and Target Computers

Use 'slrtpingtarget' to test the connection between the development and target
computers.

if ~strcmp(slrtpingtarget, 'success')
 error(message('xPCTarget:examples:Connection'));
end

Open, Build, and Download Model to the Target Computer

Open the oscillator model, xpcosc. Under the model's configuration parameter Simulink
Real-Time option settings, the system target file has been set to slrt.tlc. Hence, building
the model will create an executable image, xpcosc.mldatx, that can be run on a target
computer booted with the Simulink Real-Time kernel.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcosc'));

15 Simulink Real-Time Examples

15-12

Build the model and download the image, xpcosc.mldatx, to the target computer.

• Configure for a non-Verbose build.
• Build and download application.

set_param('xpcosc','RTWVerbose','off');
rtwbuild('xpcosc');
tg = slrt('TargetPC1');
load(tg,'xpcosc');

Starting Simulink Real-Time build procedure for model: xpcosc
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: xpcosc
Warning: Unable to configure logging for model 'xpcosc' because it is already
configured.
Created MLDATX ..\xpcosc.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

 Signal Tracing Using Software Triggering

15-13

Run Model, Randomize 'Gain' Parameter, Plot Host Scope Data

This code accomplishes a number of tasks.

Task 1: Create Target Object

Create the MATLAB® variable, tg, containing the Simulink Real-Time target object. This
object allows you to communicate with and control the target computer.

• Create a Simulink Real-Time target object
• Set sample time to 250us
• Set stop time to a high value (10000s)
• Start model execution

Task 2: Create, configure, and plot to the host scope during each run.

• Get index of parameter 'Gain1/Gain'
• Get index of signal 'Integrator1'
• Get index of signal 'Signal Generator'
• Define (add) a host scope object
• Add signals to signal list of scope object
• Set number of samples
• Set decimation factor
• Set trigger mode

Task 3: Check for Plot Figure

Does the plot figure exist?

• If no, create figure
• If yes, make it the current figure

Task 4: Loop to acquire 25 data packages from the scope object.

Change parameter Gain1/Gain every fifth acquisition loop to a random value between 0
and 2000.

Task 5: Start scope object and trigger randomly

15 Simulink Real-Time Examples

15-14

• Start scope object
• Wait until scope object has 'ready' state.
• Randomize the amount of wait time before triggering scope.
• Wait a random period (0..4s).
• Software trigger the scope object.
• Wait until scope-object has 'finished' state.

Task 6: Create time vector, upload scope data and display it.

• Upload time vector
• Upload acquired data and plot

tg = slrt; % create target object
tg.SampleTime = 0.000250;
tg.StopTime = 10000;
start(tg);
tPar = getparamid(tg, 'Gain1', 'Gain'); % get indexes
signals(1) = getsignalid(tg, 'Integrator1');
signals(2) = getsignalid(tg, 'Signal Generator');
sc = addscope(tg, 'host'); % define scope object
addsignal(sc, signals);
sc.NumSamples = 200;
sc.Decimation = 4;
sc.TriggerMode ='Software';
figh = findobj('Name', 'scsoftwaredemo'); % check for plot figure
if isempty(figh)
 figh = figure;
 set(figh, 'Name', 'scsoftwaredemo', 'NumberTitle', 'off');
else
 figure(figh);
end
m = 1; flag = 0; % loop to acquire data
for n = 1 : 25
 if isempty(find(get(0, 'Children') == figh, 1)), flag = 1; break; end
 if ~m
 setparam(tg, tPar, 2*1000*rand);
 end
 m = rem(m + 1, 5);
 start(sc); % start scope object
 while ~strcmp(sc.Status, 'Ready for being Triggered'), end
 ttrigger = rand * 4; % randomized trigger time
 title(['scsoftwaredemo: ', num2str(n), ...

 Signal Tracing Using Software Triggering

15-15

 ' of 25 data packages, will be triggered in ', ...
 num2str(ttrigger), 's']);
 pause(ttrigger);
 if isempty(find(get(0, 'Children') == figh, 1)), flag = 1; break; end
 trigger(sc); % software trigger scope
 while ~strcmpi(sc.Status,'finished')
 end
 t = sc.Time; % create time vector and display it
 plot(t, sc.Data);
 set(gca, 'XLim', [t(1), t(end)], 'YLim', [-10, 10]);
 drawnow;
end
if ~flag, title('scsoftwaredemo: finished'); end

15 Simulink Real-Time Examples

15-16

Stop and Close Model

When done, stop the application and close the model.

• Stop model
• Close model

stop(tg);
close_system('xpcosc',0);

 Signal Tracing Using Software Triggering

15-17

Signal Tracing Using Signal Triggering
This example shows how to trace signals using a signal triggered Simulink® Real-Time™
host scope. After the script builds and downloads the oscillator model, xpcosc, to the
target computer, it adds a scope of type 'host' to the real-time application and the signals
'Integrator1' and 'Signal Generator' to the scope. The scope is then configured to trigger
on the signal 'Signal Generator' when it reaches 0.0 on a rising slope (signal value goes
negative to positive).

Once the trigger condition is met, the scope is monitored to determine when its data
acquisition is complete. Next, the scope data is uploaded to the development computer
and plotted. This process repeats 25 times. After every fifth run, the damping gain 'Gain1/
Gain' is set to a new random value (between 0 and 2000).

Check Connection Between Development and Target Computers

Use 'slrtpingtarget' to test the connection between the development and target
computers.

if ~strcmp(slrtpingtarget, 'success')
 error(message('xPCTarget:examples:Connection'));
end

Open, Build, and Download Model to the Target Computer

Open the oscillator model xpcosc. The model has been configured to build for Simulink
Real-Time, and building the model creates an executable image, xpcosc.mldatx, that can
be run on a target booted with the Simulink Real-Time kernel.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcosc'));

15 Simulink Real-Time Examples

15-18

Build the model and download the image, xpcosc.mldatx, to the target computer.

• Configure for a non-Verbose build.
• Build and download application.

set_param('xpcosc','RTWVerbose','off');
rtwbuild('xpcosc');
tg = slrt('TargetPC1');
load(tg,'xpcosc');

Starting Simulink Real-Time build procedure for model: xpcosc
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: xpcosc
Created MLDATX ..\xpcosc.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

Run Model, Randomize 'Gain' Parameter, Plot Host Scope Data

This code accomplishes a number of tasks.

 Signal Tracing Using Signal Triggering

15-19

Task 1: Create Target Object

Create the MATLAB® variable, tg, containing the Simulink Real-Time target object. This
object allows you to communicate with and control the target computer.

• Create a Simulink Real-Time Object
• Set sample time to 250us
• Set stop time to a high value (10000s)
• Start model execution

Task 2: Create, configure, and plot to the host scope during each run.

• Get index of parameter 'Gain1/Gain'
• Get index of signal 'Integrator1'
• Get index of signal 'Signal Generator'
• Define (add) a host scope object
• Add signals to signal list of scope object
• Set number of samples
• Set decimation factor
• Set trigger mode
• Set trigger signal to 'Signal Generator'
• Set trigger level
• Set trigger slope

Task 3: Check for Plot Figure

Does the plot figure exist?

• If no, create figure
• If yes, make it the current figure

Task 4: Loop to acquire 25 data packages from the scope object.

Change parameter Gain1/Gain every fifth acquisition loop to a random value between 0
and 2000.

• Start scope object

15 Simulink Real-Time Examples

15-20

• Wait until scope object has 'finished' state.

Task 5: Create time vector, upload scope data and display it.

• Upload time vector
• Upload acquired data and plot

tg = slrt; % create target object
tg.SampleTime = 0.000250;
tg.StopTime = 10000;
start(tg);
tPar = getparamid(tg, 'Gain1', 'Gain'); % create host scope and plot
signals(1) = getsignalid(tg, 'Integrator1');
signals(2) = getsignalid(tg, 'Signal Generator');
sc = addscope(tg, 'host'); % define scope object
addsignal(sc, signals);
sc.NumSamples = 200; % set number of samples and other settings
sc.Decimation = 4;
sc.TriggerMode = 'Signal';
sc.TriggerSignal = signals(2);
sc.TriggerLevel = 0.0;
sc.TriggerSlope = 'Rising';
figh = findobj('Name', 'scsignaldemo');
if isempty(figh)
 figh = figure; set(figh, 'Name', 'scsignaldemo', 'NumberTitle', 'off');
else
 figure(figh);
end
figh = findobj('Name', 'scsignaldemo'); % check for plot figure
if isempty(figh)
 figh = figure;
 set(figh, 'Name', 'scsignaldemo', 'NumberTitle', 'off');
else
 figure(figh);
end
m = 1; flag = 0; % loop to acquire data
for n = 1 : 25
 if isempty(find(get(0, 'Children') == figh, 1)), flag = 1; break; end
 if ~m
 setparam(tg, tPar, 2*1000*rand);
 end
 m = rem(m + 1, 5);
 start(sc); % start scope object
 while ~strcmpi(sc.Status,'finished'), end;

 Signal Tracing Using Signal Triggering

15-21

 t = sc.Time; % create time vector and display it
 plot(t, sc.Data);
 title(['scsignaldemo: ', num2str(n), ' of 25 data packages']);
 set(gca,'XLim',[t(1), t(end)], 'YLim', [-10, 10]);
 drawnow;
end
if ~flag, title('scsignaldemo: finished'); end

Stop and Close Model

When done, stop the application and close the model.

• Stop model

15 Simulink Real-Time Examples

15-22

• Close model

stop(tg);
close_system('xpcosc',0);

 Signal Tracing Using Signal Triggering

15-23

Signal Tracing Using Scope Triggering
This example shows how to trace signals with a scope triggered Simulink® Real-Time™
host scope. After the script builds and downloads the oscillator model, xpcosc, it adds
two scopes of type 'host' to the real-time application. The first scope is configured to
trigger on the signal 'Signal Generator' (the only signal added to this scope). The
'Integrator1' signal is also added to the second scope. Scope 2 is configured to be
triggered by the first scope (i.e., it is triggered at the same time the first scope is
triggered). This synchronizes the scopes.

Next, the scopes are started and monitored to determine when data acquisition is
complete. Data from both scopes are then uploaded to the development computer and
plotted. Although both scopes begin data acquisition at the same time, Scope 2 acquires
data over a longer time record by increasing the decimation factor from 4 to 10. This
process repeats 25 times. After every fifth run, the damping gain 'Gain1/Gain' is set to a
new random value (between 0 and 2000).

Check Connection Between Development and Target Computers

Use 'slrtpingtarget' to test the connection between the development and target
computers.

if ~strcmp(slrtpingtarget, 'success')
 error(message('xPCTarget:examples:Connection'));
end

Open, Build, and Download Model to the Target Computer

Open the oscillator model, xpcosc. Under the model's configuration parameter Simulink
Real-Time option settings, the system target file has been set to slrt.tlc. Hence, building
the model will create an executable image, xpcosc.mldatx, that can be run on a computer
booted with the Simulink Real-Time kernel.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcosc'));

15 Simulink Real-Time Examples

15-24

Build the model and download the image, xpcosc.mldatx, to the target computer.

• Configure for a non-Verbose build.
• Build and download application.

set_param('xpcosc','RTWVerbose','off');
rtwbuild('xpcosc');
tg = slrt('TargetPC1');
load(tg,'xpcosc');

Starting Simulink Real-Time build procedure for model: xpcosc
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: xpcosc
Created MLDATX ..\xpcosc.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

Run Model, Randomize 'Gain' Parameter, Plot Host Scope Data

This code accomplishes a number of tasks.

 Signal Tracing Using Scope Triggering

15-25

Task 1: Create Target Object

Create the MATLAB® variable, tg, containing the Simulink Real-Time target object. This
object allows you to communicate with and control the target computer.

• Create a Simulink Real-Time target object
• Set sample time to 250us
• Set stop time to a high value
• Start model execution

Task 2: Create, configure, and plot to the host scope during each run.

• Get index of parameter 'Gain1/Gain'
• Get index of signal 'Integrator1'
• Get index of signal 'Signal Generator'
• Define (add) first host scope object
• Define (add) second host scope object

Task 3: Set properties of first scope object

• Add 'Signal Generator' to signal list
• Set number of samples
• Set decimation factor
• Set trigger mode
• Set trigger signal to 'Signal Generator'
• Set trigger level
• Set trigger slope

Task 4: Set properties of second scope object

• Add both signals to signal list
• Set number of samples
• Set decimation factor
• Set trigger mode
• Set trigger scope to first scope object

Task 5: Check for Plot Figure

15 Simulink Real-Time Examples

15-26

Does the plot figure exist?

• If no, create figure
• If yes, make it the current figure

Task 7: Loop to acquire 25 data packages from the scope object.

• Change parameter Gain1/Gain every fifth acquisition loop to a random value between
0 and 2000.

• Start second scope (waits until triggered by first scope)
• Start first scope
• Wait until both scope objects have 'finished' state.

Task 8: Scope Objects Display Time Vector

First scope object: create time vector, upload scope data and display it.

• Upload time vector
• Upload acquired data and plot

Second scope object: create time vector, upload scope data and display it.

• Upload time vector
• Upload acquired data and plot

tg = SimulinkRealTime.target; % create target object
tg.SampleTime = 0.000250;
tg.StopTime = 10000;
start(tg);
tPar = getparamid(tg, 'Gain1', 'Gain'); % get indexes
signals(1) = getsignalid(tg, 'Integrator1');
signals(2) = getsignalid(tg, 'Signal Generator');
scs = addscope(tg, 'host'); % add scopes
scs(2) = addscope(tg, 'host');
addsignal(scs(1), signals(2)); % set scope object properties
scs(1).NumSamples = 200;
scs(1).Decimation = 4;
scs(1).TriggerMode = 'Signal';
scs(1).TriggerSignal = signals(2);
scs(1).TriggerLevel = 0.0;
scs(1).TriggerSlope = 'Rising';
addsignal(scs(2),signals); % sect scope object properties

 Signal Tracing Using Scope Triggering

15-27

scs(2).NumSamples = 200;
scs(2).Decimation = 10;
scs(2).TriggerMode = 'Scope';
scs(2).TriggerScope = scs(1).ScopeId;
figh = findobj('Name', 'scscopedemo'); % check for plot figure
if isempty(figh)
 figh = figure;
 set(figh, 'Name','scscopedemo','NumberTitle','off');
else
 figure(figh);
end
m = 1; flag = 0; % loop to acquire data
for n = 1 : 25
 if isempty(find(get(0, 'Children') == figh, 1)), flag = 1; break; end
 if ~m
 setparam(tg, tPar, 2*1000*rand);
 end
 m = rem(m + 1, 5);
 scs(2).start;
 scs(1).start;
 while ~strcmpi(scs(1).Status,'finished') || ...
 ~strcmpi(scs(2).Status,'finished')
 end % wait for scope objects to finish
 subplot(2, 1, 1); % first scope object displays time vector
 t1 = scs(1).Time;
 plot(t1, scs(1).Data, 'g');
 set(gca, 'XLim', [t1(1), t1(end)], 'YLim', [-10, 10]); ylabel('Scope 1');
 title(['scscopedemo: ', num2str(n), ' of 25 data packages']);
 subplot(2,1,2); % second scope object displays time vector
 t2 = scs(2).Time;
 plot(t2, scs(2).Data);
 set(gca,'XLim',[t2(1),t2(end)],'YLim',[-10,10]); ylabel('Scope 2');
 drawnow;
end
if ~flag
 subplot(2, 1, 1);
 title('scscopedemo: finished');
end

15 Simulink Real-Time Examples

15-28

Stop and Close Model

When done, stop the application and close the model.

• Stop model
• Close model

stop(tg);
close_system('xpcosc',0);

 Signal Tracing Using Scope Triggering

15-29

Signal Tracing With a Target Scope
This example shows how to trace signals with an Simulink® Real-Time™ target scope.
Target scopes are used to trace or display signals on a video monitor attached to the
target computer. After the script builds and downloads the oscillator model, xpcosc, to the
target computer, it adds four scopes of type 'target' to the application, each scope having
a different acquisition DisplayMode. The four scopes are identified by the following scope
numbers: 1, 3, 6, and 7. The signals 'Signal Generator' (oscillator input) and 'Integrator1'
(oscillator output) are added to and displayed on each scope.

• scs(1): Scope # 1 is set to Redraw, Grid, FreeRun.
• scs(2): Scope # 3 is set to Redraw, NoGrid, Signal.
• scs(3): Scope # 6 is set to Numerical, - , Software.
• scs(4): Scope # 7 is set to Redraw, Grid, Scope.

This example shows how to use the SET function to set multiple object property values in
one command.

Check Connection Between Development and Target Computers

Use 'slrtpingtarget' to test the connection between the development and target
computers.

if ~strcmp(slrtpingtarget, 'success')
 error(message('xPCTarget:examples:Connection'));
end

Open, Build, and Download Model to the Target Computer

Open the oscillator model xpcosc. Under the model's configuration parameter Simulink
Real-Time option settings, the system target file has been set to xpctarget.tlc. Hence,
building the model will create an executable image, xpcosc.mldatx, that can be run on a
computer booted with the Simulink Real-Time kernel.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcosc'));

15 Simulink Real-Time Examples

15-30

Build the model and download the image, xpcosc.mldatx, to the target computer.

• Configure for a non-Verbose build.
• Build and download application.

set_param('xpcosc','RTWVerbose','off');
rtwbuild('xpcosc');
tg = slrt('TargetPC1');
load(tg,'xpcosc');

Starting Simulink Real-Time build procedure for model: xpcosc
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: xpcosc
Created MLDATX ..\xpcosc.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

Run Model, Plot Target Scope Data

Create the MATLAB® variable, tg, containing the Simulink Real-Time target object. This
object allows you to communicate with and control the target computer.

 Signal Tracing With a Target Scope

15-31

• Create a Simulink Real-Time target object
• Set sample time to 250us
• Set stop time to a high value (10000s)

tg.SampleTime = 0.000250;
tg.StopTime = 10000;

• Define target scope objects 1, 3, 6 and 7: vectorization is used.

scs = addscope(tg, 'target', [1,3,6,7]);

Get indices of signals 'Integrator1', 'Signal Generator'

• Get index of signal 'Integrator1'
• Get index of signal 'Signal Generator'
• Add signals to the scope objects

signals(1) = getsignalid(tg, 'Integrator1');
signals(2) = getsignalid(tg, 'Signal Generator');
addsignal(scs, signals);

Use the SET command to simultaneously set properties for each element of a scope
vector

• Set decimation factor
• Set scope 1 properties.
• Set scope 3 properties.
• Set scope 6 properties.
• Set scope 7 properties.
• Set Y axis limits for each scope in the vector.

set(scs,'Decimation',1)
set(scs(1), ...
 {'NumSamples', 'TriggerMode', 'Grid', 'DisplayMode', 'YLimit'}, ...
 {200, 'FreeRun', 'On', 'Redraw', [-10, 10]});
set(scs(2), ...
 {'NumSamples', 'TriggerMode', 'TriggerSignal', 'TriggerLevel', ...
 'TriggerSlope', 'Grid', 'DisplayMode'}, ...
 {500, 'Signal', getsignalid(tg, 'Signal Generator'), 0.0, ...
 'Rising', 'Off', 'Redraw'});
set(scs(3), 'NumSamples',100, 'TriggerMode', 'Software', 'DisplayMode', 'Numerical');

15 Simulink Real-Time Examples

15-32

set(scs(4), ...
 {'NumSamples', 'TriggerMode', 'TriggerScope', 'Grid', 'DisplayMode'}, ...
 {2000, 'Scope', 3, 'On', 'Redraw'});
set(scs([1,2,4]), 'YLimit', 'Auto');

• Start acquisition of every scope
• Start simulation
• Software trigger scope 6

start(scs);
start(tg);
trigger(scs(3));

Capture an Image of the Target Computer Video Display

• Wait for 1 sec after the run
• Snapshot of target computer video display

pause(1);
tg.viewTargetScreen;

 Signal Tracing With a Target Scope

15-33

Close Model

When done, close the model.

• Close model

close_system('xpcosc',0);

15 Simulink Real-Time Examples

15-34

Pre- and Post-Triggering of a Host Scope
This example shows pre- and post-triggering of a signal-triggered Simulink® Real-Time™
host scope. After the script builds and downloads the oscillator model, xpcosc, to the
target computer, it adds a scope of type 'host' to the real-time application and the signals
'Integrator1' and 'Signal Generator' to the scope. The scope is then configured to trigger
on the signal 'Signal Generator' when it reaches 0.0 on a rising slope (signal value goes
negative to positive). Pre-triggering is set to 12 samples, meaning that the 12 samples
collected prior to the trigger are also stored in the host scope data vector.

Once the trigger condition is met, the scope is monitored to determine when its data
acquisition is complete. Next, the scope data is uploaded to the development computer
and plotted. This process repeats 25 times. After every fifth run, the damping gain 'Gain1/
Gain' is set to a new random value (between 0 and 2000) and the scope toggles between a
12 sample pre-trigger and post-trigger mode.

Rationale for choosing 12 samples: The model sample time is 250 usec. Since the
decimation factor for the scope is set to 4, the difference between two acquired samples
is 1 ms. The 'Signal Generator' block outputs a square wave at 20 Hertz (50 msec per
wave). Therefore, the acquisition will be shifted by 12 ms (approximately 1/4 of a square
wave) each time the scope is updated.

Check Connection Between Development and Target Computers

Use 'slrtpingtarget' to test the connection between the development and target
computers.

if ~strcmp(slrtpingtarget, 'success')
 error(message('xPCTarget:examples:Connection'));
end

Open, Build, and Download Model to the Target Computer

Open the oscillator model, xpcosc. Under the model's configuration parameter Simulink
Real-Time options settings, the system target file has been set to slrt.tlc. Hence, building
the model will create an executable image, xpcosc.mldatx, that can be run on a computer
booted with the Simulink Real-Time kernel.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcosc'));

 Pre- and Post-Triggering of a Host Scope

15-35

Build the model and download the image, xpcosc.mldatx, to the target computer.

• Configure for a non-Verbose build.
• Build and download application.

set_param('xpcosc','RTWVerbose','off');
rtwbuild('xpcosc');
tg = slrt('TargetPC1');
load(tg,'xpcosc');

Starting Simulink Real-Time build procedure for model: xpcosc
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: xpcosc
Created MLDATX ..\xpcosc.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

Run model, Randomize 'Gain' Parameter, Plot Host Scope Data

This code accomplishes a number of tasks.

15 Simulink Real-Time Examples

15-36

Task 1: Create Target Object

Create the MATLAB® variable, tg, containing the Simulink Real-Time target object. This
object contains the information required to communicate with and control the target
computer.

• Create a Simulink Real-Time target object
• Set sample time to 250us
• Set stop time to a high value (10000s)
• Start model execution

Task 2: Create, configure, and plot to the host scope during each run.

• Get index of parameter 'Gain1/Gain'
• Get index of signal 'Integrator1'
• Get index of signal 'Signal Generator'
• Define (add) a host scope object
• Add signals to signal list of scope object
• Set number of samples
• Set decimation factor
• Set trigger mode
• Set trigger signal to 'Signal Generator'
• Set trigger level
• Set trigger slope
• Set pre-triggering to 12 samples

Task 3: Check for Plot Figure

Does the plot figure exist?

• If no, create figure
• If yes, make it the current figure

Task 4: Loop to acquire 25 data packages from the scope object.

• Change parameter Gain1/Gain every fifth acquisition loop to a random value between
0 and 2000.

 Pre- and Post-Triggering of a Host Scope

15-37

• Toggle between pre- and post-triggering
• Start scope object

Task 5: Wait until scope object has 'finished' state.

• Create time vector, upload scope data and display it.
• Upload time vector
• Upload acquired data and plot

tg = SimulinkRealTime.target; % create target object
tg.SampleTime = 0.000250;
tg.StopTime = 10000;
start(tg);
tPar = getparamid(tg, 'Gain1', 'Gain'); % get indexes
signals(1) = getsignalid(tg, 'Integrator1');
signals(2) = getsignalid(tg, 'Signal Generator');
sc = addscope(tg, 'host'); % define scope object
addsignal(sc, signals);
sc.NumSamples = 200;
sc.Decimation = 4;
sc.TriggerMode = 'Signal';
sc.TriggerSignal = signals(2);
sc.TriggerLevel = 0.0;
sc.TriggerSlope = 'rising';
sc.NumPrePostSamples = -12;
figh = findobj('Name', 'scprepostdemo'); % check for plot figure
if isempty(figh)
 figh = figure;
 set(figh, 'Name', 'scprepostdemo', 'NumberTitle', 'off');
else
 figure(figh);
end
m = 1; flag = 0; % loop to acquire data packages
for n = 1 : 25
 if isempty(find(get(0, 'Children') == figh, 1)), flag = 1; break; end
 if ~m
 setparam(tg, tPar, 2*1000*rand);
 sc.NumPrePostSamples = -sc.NumPrePostSamples;
 end
 m = rem(m + 1, 5);
 start(sc);
while ~strcmpi(sc.Status,'finished'), end; % wait for scope finished
 t = sc.Time;

15 Simulink Real-Time Examples

15-38

 plot(t, sc.Data);
 if (sc.NumPrePostSamples < 0)
 textString = '(Pre-Triggered)';
 else
 textString = '(Post-Triggered)';
 end
 title(['scprepostdemo: ', num2str(n), ' of 25 data packages ' textString]);
 set(gca,'XLim',[t(1), t(end)], 'YLim', [-10, 10]);
 drawnow;
end
if ~flag, title('scprepostdemo: finished'); end

 Pre- and Post-Triggering of a Host Scope

15-39

Stop and Close Model

When done, stop the application and close the model.

Stop model Close model

stop(tg);
close_system('xpcosc',0);

15 Simulink Real-Time Examples

15-40

Time- and Value-Equidistant Data Logging
This example shows how to do time- and value-equidistant data logging with Simulink®
Real-Time™. After the script builds and downloads the oscillator model, xpcosc, to the
target computer, it runs the application and logs data for 0.2 sec. The option to log states
is turned off for this example.

At the end of the first run, the time and output logs (tg.TimeLog and tg.OutputLog) are
retrieved and plotted on the development computer. Initially the logging mode is time-
equidistant and every sample is logged. Subsequently, the logging mode is set to value-
equidistant with values between 0.02 and 0.2 in steps of 0.02. If the PARAM variable is
set to 1, the damping gain 'Gain1/Gain' is randomly selected and set to a new value before
starting each run. Otherwise, 'Gain1/Gain' is held constant.

Note: For the case with a random gain setting, the results may appear incorrect due to
the combined effects of changing both the gain and the value-equidistant logging
parameter.

Check Connection Between Development and Target Computers

Use 'slrtpingtarget' to test the connection between the development and target
computers.

if ~strcmp(slrtpingtarget, 'success')
 error(message('xPCTarget:examples:Connection'));
end

Open, Build, and Download Model to the Target Computer

Open the oscillator model xpcosc. The model has been configured to build for Simulink
Real-Time, and building the model creates an executable image, xpcosc.mldatx, that can
be run on a target booted with the Simulink Real-Time kernel.

Determine Whether xpcosc is Open

systems = find_system('type', 'block_diagram');
if all(~strcmp('xpcosc', systems))
 mdlOpen = 0;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcosc'));
else
 mdlOpen = 1;
end
if (mdlOpen), stateOption = get_param('xpcosc', 'SaveState'); end

 Time- and Value-Equidistant Data Logging

15-41

Turn State logging off for this example.
set_param('xpcosc', 'SaveState', 'off');

Build the model and download the image, xpcosc.mldatx, to the target computer.

• Configure for a non-Verbose build.
• Build and download application.

set_param('xpcosc','RTWVerbose','off');
rtwbuild('xpcosc');
tg = slrt('TargetPC1');
load(tg,'xpcosc');

Starting Simulink Real-Time build procedure for model: xpcosc
Generated code for 'xpcosc' is up to date because no structural, parameter or code replacement library changes were found.
Successful completion of build procedure for model: xpcosc
Created MLDATX ..\xpcosc.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

Close or Reset Model

Close the model if we opened it or reset the state if it was already open.

15 Simulink Real-Time Examples

15-42

if (mdlOpen)
 set_param('xpcosc', 'SaveState', stateOption);
else
 bdclose('xpcosc');
end

Run Model, Set Value-Equidistant Logging Parameter, Plot Logged Data

Create the MATLAB® variable, tg, containing the Simulink Real-Time target object. This
object allows you to communicate with and control the target computer.

• Create a Simulink Real-Time Object
• Set sample time to 250us
• Set stop time to 0.2s
• Time-equidistant logging

tg.SampleTime = 0.000250;
tg.StopTime = 0.2;
tg.LogMode = 'normal';

• Start model execution
• Get index of parameter 'Gain1/Gain'

start(tg);
tPar = getparamid(tg, 'Gain1','Gain');

Does the plot figure exist?

• If no, create figure.
• If yes, make it the current figure.

figh = findobj('Name', 'dataloggingdemo');
if isempty(figh)
 figh = figure;
 set(figh, 'Name', 'dataloggingdemo', 'NumberTitle', 'off');
else
 figure(figh);
end

 Time- and Value-Equidistant Data Logging

15-43

Wait until the run is complete.

while strcmp(tg.Status, 'running')
 pause(0.05);
end

Retrieve the logged data and plot it.

tm = tg.TimeLog;
op = tg.OutputLog;
plot(tm, op);
set(gca, 'XLim', [tm(1), tm(end)], 'YLim', [-10, 10]);
title(['Time equidistant logging, ' num2str(length(tm)) ' samples']);
drawnow;
PARAM = 1; flag = 0;

15 Simulink Real-Time Examples

15-44

Loop over the equidistant logging

• Change parameter Gain1/Gain to random value between 0 and 2000.
• Set value-equidistant logging parameter to n.
• Start model execution
• Wait until the application is complete.
• Retrieve the logged data and plot it.

for vep = 0.02 : 0.02 : 0.2
 if isempty(find(get(0, 'Children') == figh, 1)), flag = 1; break; end
 if PARAM == 1
 setparam(tg, tPar, 2*1000*rand);

 Time- and Value-Equidistant Data Logging

15-45

 end
 set(tg, 'LogMode', vep);
 start(tg);
 while strcmp(tg.Status, 'running')
 pause(0.05);
 end
 tm = tg.TimeLog;
 op = tg.OutputLog;
 plot(tm, op);
 set(gca, 'XLim', [tm(1), tm(end)], 'YLim', [-10, 10]);
 title(['Value equidistant logging (' num2str(vep) '): ' ...
 num2str(length(tm)) ' samples']);
 drawnow;
end

15 Simulink Real-Time Examples

15-46

Stop Application

When done, stop the application from running.

if ~flag, title('dataloggingdemo: finished'); end
stop(tg);

 Time- and Value-Equidistant Data Logging

15-47

Frame Signal Processing
This example model shows how to use a for() loop to iterate through a frame one
sample at a time when the minimum sample time is the frame completion time.

This example requires DSP System Toolbox™.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcFrameloop'))

15 Simulink Real-Time Examples

15-48

Spectrum Analyzer
This example shows how to use Simulink® Real-Time™ as a real-time spectrum analyzer.
The example uses the model xpcdspspectrum. To examine the design and
implementation of the key block, 'Spectrum Scope', right-click the block and select 'Mask
>> Look Under Mask'.

The example displays the Fast Fourier Transform (FFT) of the input signal using a buffer
of 512 samples. The input signal is the sum of two sine waves, one with an amplitude of
0.6 and a frequency of 250 Hz, the other with an amplitude of 0.25 and a frequency of
600 Hz. The resulting spectrum is displayed in a scope of type 'Target' on the target
computer monitor.

The example also shows how you can use MATLAB® language to change the amplitude
and frequency of the input sine waves while the application is running.

To run the example, you must have installed DSP System Toolbox™ on your development
computer and started the target computer with target scopes enabled.

Check Connection Between Development and Target Computers

Use 'slrtpingtarget' to test the connection between the development and target
computers.

if ~strcmp(slrtpingtarget, 'success')
 error(message('xPCTarget:examples:Connection'));
end

Open, Build, and Download Model to the Target Computer

Open the model xpcdspspectrum. Under the model's configuration parameter Simulink
Real-Time option settings, the system target file has been set to slrt.tlc. Hence, building
the model will create an executable image, xpcdspspectrum.mldatx, that can be run on a
computer booted with the Simulink Real-Time kernel.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcdspspectrum'));

 Spectrum Analyzer

15-49

Build the model and download the image, xpcdspspectrum.mldatx, to the target computer.

• Configure for a non-Verbose build.
• Build and download application.

set_param('xpcdspspectrum','RTWVerbose','off');
rtwbuild('xpcdspspectrum');

Starting Simulink Real-Time build procedure for model: xpcdspspectrum
Generated code for 'xpcdspspectrum' is up to date because no structural, parameter or code replacement library changes were found.
Successful completion of build procedure for model: xpcdspspectrum
Created MLDATX ..\xpcdspspectrum.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

Run Model and Plot Spectrum Data

Create the MATLAB® variable, tg, containing the Simulink Real-Time target object. This
object allows you to communicate with and control the target computer. After starting the
model, the spectrum will be displayed on the target computer screen.

• Create an Simulink Real-Time Object
• Start model execution
• Wait for scope to be updated
• Get spectrum plot

15 Simulink Real-Time Examples

15-50

tg = slrt('TargetPC1');
load(tg,'xpcdspspectrum');
start(tg);
pause(1);
tg.viewTargetScreen;
tg.StopTime = 60;
disp('Note: Model will continue to run for 60 seconds. To stop execution, type tg.stop')

Note: Model will continue to run for 60 seconds. To stop execution, type tg.stop

 Spectrum Analyzer

15-51

Changing Signal Characteristics

You can change the amplitude and frequency of the sine wave generators while the
application is running. To do this, first call getparamid with the target object, the block
name, and the parameter name to get the parameter object. Then, call setparam with
the target object, the parameter object, and the new value.

s1amp = getparamid(tg, 'Sine 1', 'Amplitude');

15 Simulink Real-Time Examples

15-52

setparam(tg, s1amp, 0.3);

By repeated use of the getparamid and setparam commands. you can monitor and vary
the input signals in real time.

s1fre = getparamid(tg, 'Sine 1', 'Frequency');

setparam(tg, s1fre, 300);

s2amp = getparamid(tg, 'Sine 2', 'Amplitude');

setparam(tg, s2amp, 0.55);

s2fre = getparamid(tg, 'Sine 2', 'Frequency');

setparam(tg, s2fre, 500);

 Spectrum Analyzer

15-53

Simple Client Application With the .NET API
This example shows a C# client application that uses the Simulink® Real-Time™ API for
Microsoft® .NET Framework to interface with the target computer. Developed using
Microsoft® Visual Studio®, the client application loads, starts, and controls the oscillator
real-time application, xpcosc.mldatx.

For more information about Simulink Real-Time API for Microsoft .NET Framework, see
the Simulink Real-Time documentation.

REQUIREMENT:

• To open the project files, you must have installed Microsoft Visual Studio.

Open the Model

Open the oscillator model.

addpath(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos'));
mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp('xpcosc', systems))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcosc'));
end

15 Simulink Real-Time Examples

15-54

Run the Model

Run the model in Simulink® to observe its dynamic behavior.

Start the development computer model.

set_param(bdroot,'SimulationCommand','start');
pause(3); % Wait for 3 sec.

View plot window.

open_system([bdroot,'/Scope']);

 Simple Client Application With the .NET API

15-55

Close plot window.

close_system([bdroot,'/Scope']);

Build the Model

Build the model and download to the target computer

• Do not download after building.
• Configure for a non-Verbose build.
• Build and download application.
• Close the target connection.

set_param('xpcosc','xPCisDownloadable','off');
set_param('xpcosc','RTWVerbose','off');

15 Simulink Real-Time Examples

15-56

rtwbuild('xpcosc');
tg = slrt('TargetPC1');
load(tg,'xpcosc');
if exist('tg','var'),tg.close;end

Starting Simulink Real-Time build procedure for model: xpcosc
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: xpcosc
Created MLDATX ..\xpcosc.mldatx
Download process is disabled.

Close the Model

Close the target model if we opened it.

if (mdlOpen)
 bdclose('xpcosc');
end

Open the Client Application (Example 1)

Open the client application: Oscillator Client (Example 1)

Set the Target TCP/IP Address and Target TCP/IP Port to match your target computer
configuration.

 Simple Client Application With the .NET API

15-57

Figure 3: Oscillator Client Application (Example 1)

Find xpcosc.mldatx

Next, by clicking the Find xpcosc.mldatx... button, navigate to and select the
application file xpcosc.mldatx. Click the Open button to close the Select application
file window.

15 Simulink Real-Time Examples

15-58

Figure 4: File Find dialog box

Confirm your target computer is booted and connected to the development computer,
then:

• Click the Connect button to connect to the target computer
• Click the Load button to load the application on to the target computer
• Click the Run button to start the application running

If you have a monitor connected to the target computer, you will see the oscillator
simulation results displayed in a target scope. You can change the damping parameter by
moving the slider. When done:

• Click the Stop button to stop the application from running
• Click the Unload button to unload the application from the target computer
• Click the Disconnect button to disconnect from the target computer

 Simple Client Application With the .NET API

15-59

Open the Client Application With Host Scope (Example 2)

Host scopes can be used to view signals on the development computer. This example uses
host scopes to view the oscillator command and response within a client plot figure.

Open the client application: Oscillator Client (Example 2)

As before, set the Target TCP/IP Address and Target TCP/IP Port to match your target
computer configuration and then use the Find xpcosc.mldatx button to navigate to and
select the real-time application file.

Click the Connect, Load, and Run buttons. You should see the oscillator command and
response signals in the plot figure.

15 Simulink Real-Time Examples

15-60

Figure 5: Oscillator Client Application With Host Scope (Example 2)

 Simple Client Application With the .NET API

15-61

Project Files

The Microsoft Visual Studio project associated with these examples is located in the
Simulink Real-Time API folder here: Project Folder

15 Simulink Real-Time Examples

15-62

Concurrent Execution on Simulink® Real-Time™
This example shows how to apply explicit partitioning to enhance concurrent execution of
a real-time application that you generate by using Simulink Real-Time.

Simulink Real-Time supports concurrent execution by using implicit partitioning or
explicit partitioning of models. For explicit partitioning, Simulink Real-Time users
partition the root-level model by using referenced models, Simulink subsystems, or other
options that Simulink supports. For more information about model partitioning for
concurrent execution, see:

• “Implicit and Explicit Partitioning of Models” (Simulink)
• “Implement Task Parallelism in Simulink” (Simulink)
• “Implement Data Parallelism in Simulink” (Simulink)
• “Partition Your Model Using Explicit Partitioning” (Simulink)

This example shows the relationship between the explicit partitioning of the tasks in the
model subsystems and the execution of tasks by using the Simulink Real-Time profiling
tool.

The example model dxpcmds6t runs at sample rate of 0.001 second.

To run the model with adjusted sample rate of 0.01 second, change the sample rated
before running the example. In the MATLAB Command Window, type:

Ts = 0.01;

Open, Build, and Download the Model

Open the model dxpcmds6t. The model is mapped to seven threads: Model1_R1,
Model1_R2, Model1_R3, Model1_R4, Model2_R1, Model2_R3, and Model2_R4.

These threads run at sample rates of Ts, 2*Ts, 3*Ts, 4*Ts, Ts, 3*Ts, and 4*Ts.

mdl='dxpcmds6t';
open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos',mdl));

 Concurrent Execution on Simulink® Real-Time™

15-63

The explicit partitioning in the top-level model occurs in subsystems System1 and
System2.

open_system([mdl,'/System1']);

15 Simulink Real-Time Examples

15-64

open_system([mdl,'/System2']);

 Concurrent Execution on Simulink® Real-Time™

15-65

To apply explicit partitioning, in the Simulink Editor, on the Real-Time tab, click
Hardware Settings, and then select Solver > Configure Tasks. Select the Tasks and
Mapping node.

15 Simulink Real-Time Examples

15-66

Build, download, and run the model.

set_param(mdl,'RTWVerbose','off');
rtwbuild(mdl);
tg = slrt('TargetPC1');
load(tg,mdl);
startProfiler(tg);
start(tg);
pause(2);
stop(tg);

Starting Simulink Real-Time build procedure for model: dxpcmds6t
Generated code for 'dxpcmds6t' is up to date because no structural, parameter or code replacement library changes were found.

 Concurrent Execution on Simulink® Real-Time™

15-67

Successful completion of build procedure for model: dxpcmds6t
Created MLDATX ..\dxpcmds6t.mldatx

Display Profiling Data

The profiling data shows the execution time of each thread on a multi-core target
computer

profData = tg.getProfilerData;
profData.plot;

Processing data, please wait ...

15 Simulink Real-Time Examples

15-68

Close the Model

bdclose('all');

 Concurrent Execution on Simulink® Real-Time™

15-69

Standalone User Interface using the MATLAB®
Compiler™

This example shows how to create a standalone user interface running on a Windows
computer that interacts with a real-time application using the MATLAB API.

Open and build the model

Click here to open the model: open_system('dApplicationDeploymentExample').

The model consists of a sine wave signal source, the output of which is filtered by a
Discrete Filter. The model monitors the performance of the digital filter and compares it
with theoretical results from the Bode plot of the filter transfer function. The frequency of
the signal and the filter coefficients are defined by workspace variables that are created
during model load.

model = 'dApplicationDeploymentExample';
open_system(model);

The model is configured to build a real-time application for the default Simulink Real-
Time target computer but not to automatically download the application to the target
computer after building. Instead, we load it using the user interface.

rtwbuild(model);

Starting Simulink Real-Time build procedure for model: dApplicationDeploymentExample
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.

15 Simulink Real-Time Examples

15-70

Successful completion of build procedure for model: dApplicationDeploymentExample
Created MLDATX ..\dApplicationDeploymentExample.mldatx
Download process is disabled.

Set up the target computer

When we deploy a Simulink Real-Time function, we assume that the target computer has
been correctly set up and is running the Simulink Real-Time kernel. We also expect that
the Windows computer is able to communicate with the target computer over a reliable
TCP/IP network.

Open the application in MATLAB

We create the user interface using GUIDE. The specific tasks that it implements are:

1 Connect to target machine
2 Download application
3 Start and stop application
4 Tune a parameter
5 Monitor signals via a host scope
6 Integrate MATLAB data analysis with the Simulink Real-Time functions

ApplicationDeploymentExampleGUI

 Standalone User Interface using the MATLAB® Compiler™

15-71

The example consists of the following:

1 In the top section, you enter the target IP address and port that will be used when
you click 'Connect'. These should match the settings used when you set up the target
computer. Once connected, you can download the real-time application to the target
computer and start or stop it using the corresponding buttons.

2 The MATLAB figure on the left displays the Bode magnitude plot of the system
calculated in MATLAB from the numerator and denominator coefficients of the
discrete filter.

3 The 'System Response Plot' displays the filtered output signal acquired from the
target computer using a host scope. The signal is plotted in blue and the expected
maximum and minimum value of the signal is plotted in red. The expected value is
calculated from the theoretically obtained Bode magnitude plot.

15 Simulink Real-Time Examples

15-72

4 The 'Frequency' slider allows you to vary the input signal frequency for the real-time
application. Every time the slider is changed, a blue '*' indicates the magnitude gain
of the discrete filter calculated from the signal values obtained from the target
computer.

Compile the User Interface

You use the following MATLAB Compiler command to create a standalone executable
from the MATLAB file ApplicationDeploymentExampleGUI.m and the related figure
ApplicationDeploymentExampleGUI.fig.

Note: To avoid issues with the generated EXE, copy
ApplicationDeploymentExampleGUI.m and ApplicationDeploymentExampleGUI.fig to a
temporary directory outside the MATLAB installation location, change directory to that
location and then execute the following command.

mcc -m ApplicationDeploymentExampleGUI.m ApplicationDeploymentExampleGUI.fig

Run the executable

You can run the executable on a Windows computer different from the development
computer. You must first install the MATLAB Compiler Runtime (MCR). Make sure that
the MCR exists on the Windows PATH so that the generated application can find it. More
information about distributing the application is present in the README file that is
created by the MCC command. The standalone application can be invoked at the Windows
command prompt by executing:

ApplicationDeploymentExampleGUI.exe

If you run the application on the same Windows computer as MATLAB, exit MATLAB
before running the executable.

%

 Standalone User Interface using the MATLAB® Compiler™

15-73

Add App Designer Instrument Panel App to Tank Model
This example shows how to create an App Designer instrument panel app for the Simulink
Real-Time application that you build from the xpctank model. The instrument panel
contains these App Designer components:

• Slider — To tune the required tank level (SetPoint).
• Linear Gauge — To display the actual tank level (TankLevel).
• Semicircular Gauge — To display the pump control status (ControlValue).
• Axes — To display signal output for SetPoint, TankLevel, and ControlValue.

This example also shows how to stream signal and parameter data between the real-time
application and the instrument panel app by using the instrumentation object.

open_system(docpath(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpctank')));

Start Target Computer and Build Real-Time Application

These operations generate the real-time application that streams data to the App
Designer instrument panel app.

15 Simulink Real-Time Examples

15-74

1 Start the target computer.
2 Open the model xpctank.
3 Connect the development computer to the target computer. Build the xpctank

model. Deploy the real-time application to the target computer. In the MATLAB
Command Window, type:

set_param('xpctank', 'RTWVerbose', 'off');
tg = slrt('TargetPC1');
rtwbuild('xpctank');
load(tg,'xpctank');

Starting Simulink Real-Time build procedure for model: xpctank
Generated code for 'xpctank' is up to date because no structural, parameter or code replacement library changes were found.
Successful completion of build procedure for model: xpctank
Created MLDATX ..\xpctank.mldatx

Run App Designer Instrument Panel App

The App Designer instrument panel app tankApp provides controls to start and interact
with the real-time application xpctank.

1 Run the app. Right-click the tankApp.mlapp file and click Run. Or, in the Command
Window, type: tankApp

2 Start the real-time application and stream data. In the instrument panel app, click
Start. The real-time application runs and streams data to the app. The axes display
changes to signal values.

3 Adjust the SetPoint slider. The real-time application signals react to the set point
change.

4 To stop the app, click Stop.

 Add App Designer Instrument Panel App to Tank Model

15-75

Create App Designer Instrument Panel App

To provide an interactive instrument panel display for simulation, create and save an App
Designer instrument panel app for the xpctank real-time application.

To create an instrument panel in App Designer:

15 Simulink Real-Time Examples

15-76

1 From the MATLAB Home tab, select New > App.
2 In the App Designer start page, click Blank App. Save the App Designer app as

my_tankApp.mlapp.
3 From the App Designer Design View, click the app canvas. In the Component

Browser, expand the Position tab and set the canvas position to 100 100 640 504.

Note: The position settings are optional. This information is provided if you want your
instrument panel layout to exactly match the example panel.

Add a Slider

Add a slider control from the component library. Label the slider as Set Point. Orient
the slider as vertical. Set the slider Limit as 0 10.

With the slider label selected on the canvas, in the Component Browser, expand the
Position tab and set the slider label position to 41 136 54 22. With the slider ruler
selected, in the Component Browser, expand the Position tab and set the slider position
to 58 172 3 259.

With programming, you connect the SetPoint slider control to the SetPoint parameter in
the real-time application. See Add Callback Functions to App.

Add a Semicircular Gauge

Add a semicircular gauge from the component library. Label the gauge as Control
Value (with a line feed between the words). Set the gauge Limit as -2 12. Set the
MajorTicks as 0 10.

To label the two ticks as Off and On, set MajorTicksMode, MajorTickLabelsMode, and
MinoTicksMode to manual. Then, set the MajorTickLabels to Off On (with a line feed
between the words).

With the gauge label selected, in the Component Browser, expand the Position tab and
set the label position to 79 12 44 28. With the gauge dial selected, in the Component
Browser, expand the Position tab and set the gauge position to 55 55 92 50.

With programming, you connect the ControlValue gauge to the ControlValue signal in the
real-time application. See Add Callback Functions to App.

 Add App Designer Instrument Panel App to Tank Model

15-77

Add a Linear Gauge

Add a linear gauge from the component library. Label the gauge as Tank Level. Orient
the gauge as vertical. Set the gauge Limit as 0 10.

With the gauge label selected, in the Component Browser, expand the Position tab and
set the label position to 110 136 63 22. With the gauge ruler selected, in the
Component Browser, expand the Position tab and set the gauge position to 110 168 32
270.

With programming, you connect the TankLevel gauge to the TankLevel signal in the real-
time application. See Add Callback Functions to App.

Add Plot Axes

Add plot axes from the component library. Delete the Title. Set the XLable string to
time, and then delete the YLable string. Set the XLim to 0 10 and the YLim to -1 13.

With the axes selected, in the Component Browser, expand the Position tab and set the
axes position to 197 94 424 396.

Add a Start / Stop Button

Add a button from the component library. Label the button as StartStop. This button
starts and stops the real-time application on the target computer.

With the button selected, in the Component Browser, expand the Position tab and set the
button position to 18 449 171 41.

With programming, you direct the app to respond to button-push events. See Add
Callback Functions to App.

Add Properties and Methods for Instrumentation Object to App

The App Designer adds UI code for each component that you add to the App Designer
instrument panel app my_tankApp. The UI code defines the appearance of the
component.

To add functionality to the UI components, you add properties, methods, and callbacks in
the App Designer Code View.

Switch to Code View. In the Code Browser, click Properties, and then select Add >
Private Property.

15 Simulink Real-Time Examples

15-78

Replace Property % Description with these properties. These properties identify the
target computer, model, instrumentation object and the start/stop button icons.

tg
mdl = 'xpctank';
hInst
stopIcon = 'stop_24.png';
startIcon = 'run_24.png';

In the Code Browser, click Functions, and then select Add > Private Function.

Replace the results function:

function results = func(app)

end

with these functions. These functions set up the instrumentation object and the callback
to animate the plot axes.

For the tank level gauge and the control value gauge, the HistoryFlag is set to '1'
because these signals have already been added to the instrumentation object as lines.
Their history must be present even though the scalar display uses only the last value.

function setupInstrumentation(app)
 % create the instrumentation object
 app.hInst = SimulinkRealTime.prototype.Instrumentation(app.mdl);
 % connect signals to the axes
 [~,line1] = app.hInst.connectLine(app.UIAxes,[app.mdl '/SetPoint'] ,1,'MaximumNumPoints',10000);
 [~,line2] = app.hInst.connectLine(app.UIAxes,[app.mdl '/TankLevel'] ,1,'MaximumNumPoints',10000);
 [~,line3] = app.hInst.connectLine(app.UIAxes,[app.mdl '/ControlValue'],1,'MaximumNumPoints',10000);
 % add a legend
 legend(app.UIAxes,{line1{1},line2{1},line3{1}})
 % connect signals to the scalar displays
 app.hInst.connectScalar(app.TankLevelGauge ,[app.mdl '/TankLevel'] ,1,'HistoryFlag',1);
 app.hInst.connectScalar(app.ControlValueGauge,[app.mdl '/ControlValue'],1,'HistoryFlag',1);
 % add a callback to wrap the x axis
 app.hInst.connectCallback(@app.updateUIAxes);
 app.UIAxes.XLim = [0 10];
 app.UIAxes.YLim = [-1 13];
end

function updateUIAxes(app,instObj,eventData)
 % this callback updates XLim so that the axis wrap
 currTime = eventData.ExecTime;

 Add App Designer Instrument Panel App to Tank Model

15-79

 if max(currTime)<max(app.UIAxes.XLim)
 % do nothing
 else
 app.UIAxes.XLim = max(app.UIAxes.XLim) + [0 10];
 end
end

When using the connectLine function to connect output signals from the real-time
application to the instrumentation object, the Simulink Real-Time Explorer provides a
useful view of the signals and their port numbers. To open the Explorer and view the
signals, in the MATLAB Command Window, type:

SimulinkRealTime.prototype.Explorer

15 Simulink Real-Time Examples

15-80

Add Callback Functions to App

The callback functions in the app respond to events. Events that are serviced by callback
functions include app start up, button press, new signal data, and parameter value
change.

Add Start-Up Function

The start-up function startupFcn in the app runs after component creation.

Switch to Design View and click on the app canvas. In the Component Browser, in the
Callbacks tab , select add StartupFcn callback. Add this code in the startupFcn
function.

% get target object
app.tg = slrt;
% if the target is running stop it
if strcmp(app.tg.status,'running')
 app.tg.stop;
end
% load the model on to the target
app.tg.load(app.mdl);

% update the slider based on the target value
value = app.tg.getparam('SetPoint','Value');
app.SetPointSlider.Value = value;

% setup the instrumentation object
app.setupInstrumentation;

Add Interface Close Request Function

The close request function UIFigureCloseRequest in the app runs when the app is
closed. The instrumentation object uses callbacks to add streaming data to your UIAxes.
If you delete the UIAxes by deleting and closing the UIFigure without first deleting the
instrumentation object, the callbacks state leads to errors or warnings. The best practice
is to add a close request callback to the app that stops the instrumentation object and
deletes it.

Switch to Design View tab and click the app canvas. In the Component Browser, in the
Callbacks tab , select add CloseRequestFcn callback. In the
UIFigureCloseRequest function, replace delete(app) with this code:

app.hInst.stop;
app.tg.stop;

 Add App Designer Instrument Panel App to Tank Model

15-81

delete(app.hInst)
delete(app)

Add Set Point Change Value Function

The set point value change function SetPointSliderValueChanged in the app runs
when the set point slider value changes.

Switch to Design View tab and click on the set point slider. In the Component Browser,
in the Callbacks tab , select add ValueChangedFcn callback. In the
SetPointSliderValueChanged function, replace value =
app.SetPointSlider.Value; with this code:

value = app.SetPointSlider.Value;
app.tg.setparam('SetPoint','Value',value);

Add Start-Stop Button-Push Event Function

A callback that you add to the button definition toggles the text and icon on this button,
depending on the state of the app. Click Start to run the real-time application on the
target computer and stream data to the instrument panel app. Click Stop to stop the real-
time application.

With the button selected, in the Component Browser, click Callbacks. Select
StartStopButtonPushed and click the Move cursor to function button. Add this code
in the StartStopButtonPushed function.

if strcmp(app.StartStopButton.Icon, app.startIcon)
 % START
 % clear old data
 app.hInst.clearData;
 % start instrumentation and target
 app.hInst.start(app.tg);
 % change the icon
 app.StartStopButton.Icon = app.stopIcon;
 app.StartStopButton.Text = 'Stop';

else
 % STOP
 app.hInst.stop;
 app.tg.stop;
 % change the icon
 app.StartStopButton.Icon = app.startIcon;

15 Simulink Real-Time Examples

15-82

 app.StartStopButton.Text = 'Start';
end

Save and Run the App

The app my_tankApp app is complete. The slider, semicircular gauge, linear gauge, axes,
and Start-*Stop* button have callback code that responds to their events. The app
connects to the real-time application xpctank by using the instrumentation object to
stream data to the app.

In App Designer, save the app my_tankApp.

Run the real-time application xpctank and run the App Designer app my_tankApp. For
instructions, see Start Target Computer and Build Real-Time Application and Run
App Designer Instrument Panel App.

bdclose ('all');

 Add App Designer Instrument Panel App to Tank Model

15-83

Add m-Script Instrument Panel App to Tank Model
This example shows how a MATLAB m-script can create an instrument panel for the
Simulink Real-Time application that you build from the model xpctank. The instrument
panel contains these UI components:

• Slider — To tune the required tank level (SetPoint).
• Linear Gauge — To display the actual tank level (TankLevel).
• Semicircular Gauge — To display the pump control status (ControlValue).
• Axes — To display signal output for SetPoint, TankLevel, and ControlValue.

This example also shows how to stream signal and parameter data between the real-time
application and the instrument panel by using the instrumentation object.

The example UI and callback code demonstrate the subtle syntax differences between
applying the instrumentation object in an m-script versus applying the instrumentation
object in an App Designer app. For the App Designer version of this example, see “Add
App Designer Instrument Panel App to Tank Model” on page 15-74.

open_system(docpath(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpctank')));

15 Simulink Real-Time Examples

15-84

Start Target Computer and Build Real-Time Application

These operations generate the real-time application that streams data to the instrument
panel app.

1 Start the target computer.
2 Open the model xpctank.
3 Connect the development computer to the target computer. Build the xpctank

model. Deploy the real-time application to the target computer. In the MATLAB
Command Window, type:

set_param('xpctank', 'RTWVerbose', 'off');
tg = slrt('TargetPC1');
rtwbuild('xpctank');
load(tg,'xpctank');

Starting Simulink Real-Time build procedure for model: xpctank
Generated code for 'xpctank' is up to date because no structural, parameter or code replacement library changes were found.
Successful completion of build procedure for model: xpctank
Created MLDATX ..\xpctank.mldatx

Run Instrument Panel App

The instrument panel app tankAppScript provides controls to start and interact with
the real-time application xpctank.

1 Run the app. Right-click the tankAppScript.m file and click Run. Or, in the
Command Window, type: tankAppScript

2 Start the real-time application and stream data. In the instrument panel app, click
Start. The real-time application runs and streams data to the app. The axes display
changes to signal values.

3 Adjust the SetPoint slider. The real-time application signals react to the set point
change.

4 To stop the app, click Stop.

 Add m-Script Instrument Panel App to Tank Model

15-85

Set Up Instrument Panel App

To provide an interactive instrument panel display for simulation, create the instrument
panel app as a UIFigure. Hide the app until all UI components are created.

hf = uifigure('Visible', 'off', ...
 'Position', [100 100 640 504], ...
 'CloseRequestFcn', @closeRequest);

15 Simulink Real-Time Examples

15-86

Note: The Position settings are optional. This information is provided if you want your
instrument panel layout to exactly match the example panel.

Create Plot Axes

Add a plot axe by using the UIAxes command. These axes use animation to display the
signal data that streams from the real-time application.

ha = uiaxes(hf, 'Position', [197 94 424 396]);
xlabel(ha, 'time')

Create Tank Level Gauge

Add a linear gauge by using the UIGauge command and 'linear' argument. This gauge
displays the tank level signal data.

tlGauge = uigauge(hf, 'linear', ...
 'Limits', [0 10], ...
 'Orientation', 'vertical', ...
 'Position', [110 168 32 270]);

Add a label for the tank level gauge.

uilabel(hf, ...
 'HorizontalAlignment', 'center', ...
 'Position', [110 136 63 22], ...
 'Text', 'Tank Level');

Create Set Point Slider

Add a slider by using the UISlider command. This slider enables changes to the set point
parameter value.

spSlider = uislider(hf, ...
 'Limits', [0 10], ...
 'Orientation', 'vertical', ...
 'Position', [58 172 3 259], ...
 'ValueChangedFcn', @SetPointSliderValueChanged);

Update the slider from the set point parameter value.

value = tg.getparam('SetPoint','Value');
spSlider.Value = value;

Add a label to the set point slider.

 Add m-Script Instrument Panel App to Tank Model

15-87

uilabel(hf, ...
 'HorizontalAlignment', 'right', ...
 'Position', [41 136 54 22], ...
 'Text', 'Set Point');

Create Control Value Gauge

Add a semicircular gauge by using the UIGauge command and 'semicircular'
argument. This gauge displays the control value as 'Off' or 'On'.

cvGauge = uigauge(hf, 'semicircular', ...
 'Limits', [-2 12], ...
 'MajorTicks', [0 10], ...
 'MajorTickLabels', {'Off', 'On'}, ...
 'MinorTicks', [], ...
 'Position', [55 55 92 50]);

Add a label to the control value gauge.

uilabel(hf, ...
 'HorizontalAlignment', 'center', ...
 'Position', [79 12 44 28], ...
 'Text', {'Control'; 'Value'});

Create Start-Stop Button

Add a start or stop button by using the UIButton command. This button starts the real-
time application and begins streaming data to the instrument panel. This button also
stops the real-time application.

ssButton = uibutton(hf, 'push', ...
 'Icon', 'run_24.png', ...
 'Position', [18 449 171 41], ...
 'Text', 'Start', ...
 'ButtonPushedFcn', @StartStopButtonPushed);

Show Instrument Panel App

After all the UI instruments are created, display the instrument panel.

hf.Visible = 'on';

Create Instrumentation Object

Creates the instrumentation object for the real-time application:

15 Simulink Real-Time Examples

15-88

hInst = SimulinkRealTime.prototype.Instrumentation(mdl);

Connect Signals to Axes

The connectLine commands connect the signals to lines that are plotted on the axes.

[~,line1] = hInst.connectLine(ha,[mdl '/SetPoint'] ,1,'MaximumNumPoints',10000);
[~,line2] = hInst.connectLine(ha,[mdl '/TankLevel'] ,1,'MaximumNumPoints',10000);
[~,line3] = hInst.connectLine(ha,[mdl '/ControlValue'],1,'MaximumNumPoints',10000);

When using the connectLine function to connect output signals from the real-time
application to the instrumentation object, the Simulink Real-Time Explorer provides a
useful view of the signals and their port numbers. To open the Explorer and view the
signals, in the MATLAB Command Window, type:

SimulinkRealTime.prototype.Explorer

 Add m-Script Instrument Panel App to Tank Model

15-89

Add Axes Legend

The legend command labels each line in the legend with the signal name.

legend(ha,{line1{1},line2{1},line3{1}})

Connect Signals to Scalar Displays

The connectScalar commands connects the parameter values to the scalar displays.
The HistoryFlag is set to '1' because these signals have already been added to the
instrumentation object as lines. Their history must be present even though the scalar
display only uses the last value.

hInst.connectScalar(tlGauge,[mdl '/TankLevel'] ,1,'HistoryFlag',1);
hInst.connectScalar(cvGauge,[mdl '/ControlValue'],1,'HistoryFlag',1);

Add Callback to Wrap x Axis

This connectCallback command helps animate plotting signals on the axes. The
command wraps the display of signal data by changing the x origin value to keep the
signal data within the plot UI.

hInst.connectCallback(@(instObj,eventData)handleAxes(instObj,eventData,ha));
ha.XLim = [0 10];
ha.YLim = [-1 13];

Store UI Object Handles in User Data

Add object handles for the UI object. These handles enable adding callbacks to process
object events.

handle.ha = ha;
handle.tlGauge = tlGauge;
handle.spSlider = spSlider;
handle.cvGauge = cvGauge;
handle.ssButton = ssButton;
handle.tg = tg;
handle.hInst = hInst;
handle.startIcon = 'run_24.png';
handle.stopIcon = 'stop_24.png';
hf.UserData = handle;

Add Callback to Update XLim and Prevent Axis Wrap

The handleAxes callback processes signal data that plots signals on the axes.

15 Simulink Real-Time Examples

15-90

function handleAxes(instObj, eventData, ha)
currTime = eventData.ExecTime;
if max(currTime)<max(ha.XLim) % do nothing
else
 ha.XLim = max(ha.XLim) + [0 10];
end
end

Add Callback for Clean Up on Instrument Panel Close

The closeRequest callback processes UI close requests, including stop of the real-time
application. The instrumentation object uses callbacks to add streaming data to your
UIAxes. If you delete the UIAxes by deleting and closing the UIFigure without first
deleting the instrumentation object, the callback state can produce errors or warnings. It
is best practice to add a close request callback to your app that stops the instrumentation
object and deletes it.

function closeRequest(hfigure, event)
handle = hfigure.UserData;
if ~isempty(handle.hInst)
 handle.hInst.stop;
 delete(handle.hInst)
end
if ~isempty(handle.tg)
 handle.tg.stop;
end
delete(hfigure)
end

Add Callback to Handle Slider Value Changes

The SetPointSliderValueChanged callback processes changes to the slider value by
streaming the parameter value data to the real-time application.

function SetPointSliderValueChanged(hslider, event)
hfigure = hslider.Parent;
handle = hfigure.UserData;
if ~isempty(handle.tg)
 value = handle.spSlider.Value;
 handle.tg.setparam('SetPoint','Value',value);
end
end

 Add m-Script Instrument Panel App to Tank Model

15-91

Add Callback to Handle Button-Push Events

The StartStopButtonPushed callback processes button-push events. For Start button
push, the callback starts the real-time application and toggles the button label to Stop.
For Stop button push, the callback stops the real-time application and toggles the button
label to Start.

function StartStopButtonPushed(hbutton, event)
hfigure = hbutton.Parent;
handle = hfigure.UserData;
if strcmp(handle.ssButton.Icon, handle.startIcon) % START
 handle.hInst.clearData; % clear old data
 handle.hInst.start(handle.tg); % start instrumentation and target
 handle.ssButton.Icon = handle.stopIcon; % change the icon
 handle.ssButton.Text = 'Stop';
else % STOP
 handle.hInst.stop;
 handle.tg.stop;
 handle.ssButton.Icon = handle.startIcon; % change the icon
 handle.ssButton.Text = 'Start';
end
end

bdclose('all')

15 Simulink Real-Time Examples

15-92

Add App Designer App to Inverted Pendulum Model
This example shows how to stream signal signals to an App Designer instrument panel
app from a Simulink Real-Time application. The example builds the real-time application
from the model slrtpendulum. This model contains referenced models that produce the
signals that are streamed and plotted. The instrument panel contains these App Designer
components:

• Axes — To display an animation for the two inverted pendulum and cart systems.
• Axes — To display signal output for responses to disrupting the pendulums.
• Nudge buttons — To apply input (nudges) to the carts that hold the pendulums.

To stream signal and parameter data between the real-time application and the
instrument panel app, the app uses the instrumentation object.

open_system(docpath(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','slrtpendulum')));

 Add App Designer App to Inverted Pendulum Model

15-93

load_system(docpath(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','slrtpendulum_100Hz')));

load_system(docpath(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','slrtpendulum_200Hz')));

15 Simulink Real-Time Examples

15-94

Start Target Computer and Build Real-Time Application

These tasks generate the real-time application that streams data to the App Designer
instrument panel app.

1 Start the target computer.
2 Open the model slrtpendulum.
3 Connect the development computer to the target computer. Build the slrtpendulum

model.
4 Deploy the real-time application to the target computer.

In the MATLAB Command Window, type:

set_param('slrtpendulum', 'RTWVerbose', 'off');
tg = slrt('TargetPC1');
rtwbuild('slrtpendulum');
load(tg,'slrtpendulum');

Starting Simulink Real-Time build procedure for model: slrtpendulum_100Hz

Starting Simulink Real-Time build procedure for model: slrtpendulum_200Hz

Starting Simulink Real-Time build procedure for model: slrtpendulum
Generated code for 'slrtpendulum' is up to date because no structural, parameter or code replacement library changes were found.
Successful completion of build procedure for model: slrtpendulum
Created MLDATX ..\slrtpendulum.mldatx

Run App Designer Instrument Panel App

The App Designer instrument panel app Pendulum provides controls to start and interact
with the real-time application slrtpendulum.

1. Run the app. To start the App Designer app Pendulum.mlapp and create the handle
app, in the MATLAB Command Window, type:

app = Pendulum;

Acquire Group 1
 DiscreteInterval = 0.010
 SampleTimeString = 0.01
 HistoryFlag = 1
 signals:

 Add App Designer App to Inverted Pendulum Model

15-95

 slrtpendulum/Reference1:1
 cartposition1
 pendposition1
Acquire Group 2
 DiscreteInterval = 0.005
 SampleTimeString = 0.005
 HistoryFlag = 1
 signals:
 slrtpendulum/Reference2:1
 cartposition2
 pendposition2

As the app starts, it displays the output of the view AcquiredList command. This view
displays the signal hierarchy in the instrumentation object in the app.

2. To disrupt the equilibrium of the pendulum on each cart, click the Nudge buttons . You
can adjust the nudge size by using the value selection next to each button.

3. Observe the plot reactions to each nudge. When the nudge value gets too large, the
pedulum cannot recover its equilibrium.

15 Simulink Real-Time Examples

15-96

App Callback Code

The instrument panel app functionality is provided by callback code. For more
information about adding app components and inserting callback code, see “Add App
Designer Instrument Panel App to Tank Model” on page 15-74.

Comments in the callback code in the instrument panel app Pendulum.mlapp describe
the callback operations and programming suggestions. To view the callback code, open
Pendulum.mlapp in the App Designer, and then click the Code View tab. In the
Command Window, type:

edit Pendulum

Specify Block Paths for Signals in Referenced Models

To stream data from signals in referenced models, the connectLine and addSignal
functions for the instrumentation object use a cell array to pass the block path.

For examples, see the setupInstrumentation(app) function in the app.

 Add App Designer App to Inverted Pendulum Model

15-97

updatePlotAxes Function

This function is a callback with three arguments.

The function uses eventData.ExecTime to get the current time on the target computer
and use that time to wrap the XLims of the PlotAxes.

updateAnimationCallback Function

For each AcquireGroup, this function checks whether there is fresh data since the last
time the callback was called. If there is data, the function updates the animation objects.

Update Axes and Animation by Using Acquire Groups

Often, models have multiple sample rates.

To update plot data and plot animation, the instrumentation object groups data by
AcquireGroups. For the slrtpendulum example, the two AcquireGroups are at
different sample rates.

In the callback code, this processing is visible as AcquireGroupData signal groups in
the updateAnimationCallback function. The app displays these groups in the
instrumentation object by using the view command.

app.hInst.AcquireList.view

Close the App and Models

The instrument panel app handle app provides access to close the app.

Close the app. In the MATLAB Command Window, type:

close(app.UIFigure)

Close the open models. In the Command Window, type:

bdclose ('all');

15 Simulink Real-Time Examples

15-98

Triggering Scope Instruments
An instrument panel that uses scope instruments to trace signals.

This example shows how to trace signals using an instrument panel. The instrument panel
contains four scope instruments positioned in a two by two grid. Each scope instrument is
configured with different triggering sources: freerun, signal, manual, and scope.

To run this example, click run example. This command runs a setup script that builds,
downloads, and starts the real-time application, opens Simulink Real-Time Explorer, and
loads the instrument panel.

You can then run the instrument panel and interact with the scope instruments.

 Triggering Scope Instruments

15-99

Asynchronous Events
This example model shows how to use asynchronous event support with an external TTL
signal firing an interrupt on the parallel port.

This event invokes a function-call subsystem that serves as an interrupt service routine
(ISR).

The data exchange between the asynchronous task and the rest of the model (rate
monotonic task) is accomplished by using a Rate Transition block.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcasynctrans'))

15 Simulink Real-Time Examples

15-100

EtherCAT® Communication with Beckhoff® Analog IO
Slave Devices EL3062 and EL4002

This example shows how to communicate with EtherCAT devices using the Beckhoff®
analog I/O terminals EL3062 and EL4002.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer
as EtherCAT Master device and two analog input/output terminals EL3062 and EL4002 as
EtherCAT Slave devices. This example requires a dedicated network card that is installed
and available on the target computer. Use the dedicated card for the EtherCAT
communication. The dedicated card is in addition to the card used for the Ethernet link
between the development and target computers.

To test this model:

1 Connect the network port of the dedicated card in the target computer to the
network IN port of the Beckoff® EK1100 coupler.

2 Assemble Terminals EL3062 and EL4002 with Coupler EK1100.

 EtherCAT® Communication with Beckhoff® Analog IO Slave Devices EL3062 and EL4002

15-101

3 Loop back the I/O ports: Connect each output port of Terminal EL4002 to a
corresponding input port of Terminal EL3062.

4 Make sure that the terminals are supplied with the required 24-volt power supply.
5 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT
master node model, and builds then runs the real-time application, see the Simulink Real-
Time EtherCAT documentation.

Open the Model

To open the model, in the Command Window, type:

xpcEthercatBeckhoffAIO

This model creates two sine wave signals and sends the signals to the EL4002 terminal.
Then, the model receives input signal values from the EL3062 terminal.

The EtherCAT initialization block requires that the configuration ENI file is present in the
current folder. Copy the example configuration file from the example folder to the current
folder. Then, open the model.

copyfile(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','BeckhoffAIOconfig.xml'), '.', 'f');
copyfile(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcEthercatBeckhoffAIO.slx'), '.', 'f');
mdl = 'xpcEthercatBeckhoffAIO';
mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if isempty(strcmp(systems, mdl))
 mdlOpen = 1;
 open_system(mdl);
end

15 Simulink Real-Time Examples

15-102

Figure 1: EtherCAT model using Beckhoff® analog I/O slave devices EL3062 and
EL40002.

Configure the Model

Open the mask for the EtherCAT Init block and provide the required values for the PCI
bus and slot numbers for the network card being used for EtherCAT communication. To
get these values, in the Command Window, type tg.getPCIInfo('ethernet'). An
example command to set configuration parameters for the EtherCAT Init block is:

set_param('xpcEthercatBeckhoffAIO/EtherCAT Init ','pci_bus','5','pci_slot','0','pci_function','0')

 EtherCAT® Communication with Beckhoff® Analog IO Slave Devices EL3062 and EL4002

15-103

Describe Network with Configurator

Using a third-party EtherCAT configurator that you install on a development computer,
generate an EtherCAT configuration file BeckhoffAIOconfig.xml. This file describes
the network to the master. An overview of the process for creating the configuration file
in the EtherCAT configurator is:

1 Connect the network (consisting of terminals EK1100, EL3062, and EL4002 in this
example) to the computer where the EtherCAT configurator is installed and scan the
network to discover the connected devices.

2 Select the transmit and receive variables to be accessed as signals from the IO
terminals.

3 Define at least one cyclic task, select a task execution rate, and associate the desired
input/output variables to the task. These input/output variables must belong to
previously defined transmit/receive PDOs (for example, PDOs defined in step 2) and
be linked to the required terminals. You only must to select one variable from each
PDO to make every variable in that PDO accessible.

4 Export the configuration file into an XML file. Make sure the name of the XML file is
different from the name of your Simulink® model.

Each EtherCAT configuration file is specific to the exact network setup for which it has
been created (for example, the network discovered in step 1 of the configuration file
creation process). The configuration file provided for this example is valid if and only if
the EtherCAT network consists of terminals EK1100, EL3062, and EL4002.

The configuration file defines a set of transmit and receive variables. For this example, a
set of receive variables are defined for each input channel of terminal EL3062. Make sure
the variables for channel 1 and channel 2 of terminal EL3062 are selected respectively in
the two EtherCAT PDO Receive blocks. These two variables are 'Term 2 (EL3062).AI
Standard Channel 1.Value' and 'Term 2 (EL3062).AI Standard Channel 2.Value'. In the
same way, a set of transmit variables are defined for the two output channels of terminal
EL4002. Make sure the variables for channel 1 and channel 2 of terminal EL4002 are
selected in the two EtherCAT PDO Transmit blocks. These two variables are 'Term 3
(EL4002).AO Outputs Channel 1.Analog Output' and 'Term 3 (EL4002).AO Outputs
Channel 2.Analog Output'.

Build, Download, and Run the Model

Build the model and download to the target computer. Let the model run for 10 seconds

set_param(mdl,'RTWVerbose','off');
rtwbuild(mdl);

15 Simulink Real-Time Examples

15-104

tg = slrt('TargetPC1');
load(tg,mdl);
tg.CommunicationTimeOut=20;
start(tg);
pause(10);

Starting Simulink Real-Time build procedure for model: xpcEthercatBeckhoffAIO
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: xpcEthercatBeckhoffAIO
Created MLDATX ..\xpcEthercatBeckhoffAIO.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

Display the Target Computer Scopes

Take a snapshot of the target computer video display. Plotted are the signals transmitted
to Terminal EL4002 and received from Terminal EL3062. As expected, the transmitted
and received signals displayed on the two scopes are identical, except the offset
introduced by the transmission delay.

• Scope 1 displays the outputs of the Ethercat Init block. See the documentation of
this block for the meaning of the displayed values.

• Scope 2 displays the sine waves generated by the application and sent to channels 1
and 2 of Terminal EL4002 by the Master.

• Scope 3 displays the sine waves received from channels 1 and 2 of Terminal EL3062
via the external wire connections.

To take a snapshot of the target scopes, type:

tg.viewTargetScreen

 EtherCAT® Communication with Beckhoff® Analog IO Slave Devices EL3062 and EL4002

15-105

Stop and Close the Model

When the example completes its run, stop and close the model.

stop(tg);
if (mdlOpen)
 save_system(mdl);

15 Simulink Real-Time Examples

15-106

 close_system(mdl);
end

 EtherCAT® Communication with Beckhoff® Analog IO Slave Devices EL3062 and EL4002

15-107

EtherCAT® Communication with Beckhoff® Digital IO
Slave Devices EL1004 and EL2004

This example shows how to communicate with EtherCAT devices using the Beckhoff
digital I/O terminals EL1004 and EL2004.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer
as EtherCAT Master device and two analog input/output terminals EL1004 and EL2004 as
EtherCAT Slave devices. This example requires a dedicated network card that is installed
and available on the target computer. Use the dedicated card for the EtherCAT
communication. The dedicated card is in addition to the card used for the Ethernet link
between the development and target computers.

To test this model:

1 Connect the network port of the dedicated card in the target computer to the
network IN port of the Beckoff® EK1100 coupler.

2 Assemble Terminals EL1004 and EL2004 with Coupler EK1100.

15 Simulink Real-Time Examples

15-108

3 Loop back the first two I/O ports: Connect ports numbered 1 and 5 of Terminal
EL2004 to ports numbered 1 and 5 of Terminal EL1004.

4 Make sure that the terminals are supplied with the required 24-volt power supply.
5 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT
master node model, and builds then runs the real-time application, see the Simulink Real-
Time EtherCAT documentation.

Open the Model

To open the model, in the Command Window, type:

xpcEthercatBeckhoffDIO

This model drives a pulse wave signal and transmits the signal and its inverse as Boolean
values to the EL2004 terminal, and receives the input signal transmitted by the EL1004
terminal.

The EtherCAT initialization block requires that the configuration ENI file is present in the
current folder. Copy the example configuration file from the example folder to the current
folder. Then, open the model.

copyfile(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','BeckhoffDIOconfig.xml'), '.', 'f');
copyfile(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcEthercatBeckhoffDIO.slx'), '.', 'f');
mdl = 'xpcEthercatBeckhoffDIO';
mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if isempty(strcmp(systems, mdl))
 mdlOpen = 1;
 open_system(mdl);
end

 EtherCAT® Communication with Beckhoff® Digital IO Slave Devices EL1004 and EL2004

15-109

Figure 1: EtherCAT model using Beckhoff® digital I/O terminals EL1004 and EL2004.

Configure the Model

Open the mask for the EtherCAT Init block and provide the required values for the PCI
bus and slot numbers for the network card being used for EtherCAT communication. To
get these values, in the Command Window, type tg.getPCIInfo('ethernet'). An
example command to set configuration parameters to for the EtherCAT Init block is:

set_param('xpcEthercatBeckhoffDIO/EtherCAT Init ','pci_bus','5','pci_slot','0','pci_function','0')

15 Simulink Real-Time Examples

15-110

Describe Network with Configurator

Using a third-party EtherCAT configurator that you install on a development computer,
generate an EtherCAT configuration file BeckhoffDIOconfig.xml. This file describes
the network to the master. An overview of the process for creating the configuration file
in the EtherCAT configurator is:

1 Connect the network (consisting of terminals EK1100, EL1004, and EL2004 in this
example) to the computer where the EtherCAT configurator is installed and scan the
network to discover the connected devices.

2 Select the transmit and receive variables to be accessed as signals from the IO
terminals.

3 Define at least one cyclic task, select a task execution rate, and associate the selected
variables to the task. You only must select one variable from each PDO to make every
variable in that PDO accessible.

4 Export the configuration file into an XML file. Make sure the name of the XML file is
different from the name of your Simulink® model.

Each EtherCAT configuration file is specific to the exact network setup from which it was
created (for example, the network discovered in step 1 of the configuration file creation
process). The configuration file provided for this example is valid if and only if the
EtherCAT network consists of Terminals EK1100, EL1004, and EL2004 from Beckhoff®.

The configuration file defines a set of transmit and receive variables. For this example,
four receive variables are defined for the four input channels of Terminal EL1004. Only
the first two channels of Terminal EL1004 are used in this example. Make sure the
receive variables for channel 1 and channel 2 of terminal EL1004 are selected
respectively in the two EtherCAT PDO Receive blocks. These two variables are 'Term 3
(EL1004).Channel 1.Input' and 'Term 3 (EL1004).Channel 2.Input'. In the same way, four
transmit variables are defined for the four output channels of terminal EL2004, but only
the first two channels are tested in this example. Make sure the transmit variables for
channel 1 and channel 2 of terminal EL2004 are selected respectively in the two
EtherCAT PDO Transmit blocks. These two variables are 'Term 2 (EL2004).Channel
1.Output' and 'Term 2 (EL2004).Channel 2.Output'.

Build, Download, and Run the Model

Build the model and download to the target computer. Let the model run for 10 seconds

set_param(mdl,'RTWVerbose','off');
rtwbuild(mdl);

 EtherCAT® Communication with Beckhoff® Digital IO Slave Devices EL1004 and EL2004

15-111

tg = slrt('TargetPC1');
load(tg,mdl);
tg.CommunicationTimeOut=20;
start(tg);
pause(10);

Starting Simulink Real-Time build procedure for model: xpcEthercatBeckhoffDIO
Generated code for 'xpcEthercatBeckhoffDIO' is up to date because no structural, parameter or code replacement library changes were found.
Successful completion of build procedure for model: xpcEthercatBeckhoffDIO
Created MLDATX ..\xpcEthercatBeckhoffDIO.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

Display the Target Computer Scopes

Take a snapshot of the target computer video display. Plotted are the signals transmitted
to terminal EL2004 and received from terminal 1004. As expected, the transmitted and
received signals displayed on the two scopes are identical.

• Scope 1 displays the outputs of the Ethercat Init block. See the documentation of
this block for the meaning of the displayed values.

• Scope 2 displays the pulse wave and its inverse generated by the application and sent
to Terminal EL2004 by the EtherCAT Master.

• Scope 3 displays the signals received at the two inputs ports of Terminal EL1004.

To take a snapshot of the target scopes, type:

tg.viewTargetScreen

15 Simulink Real-Time Examples

15-112

Stop and Close the Model

When the example completes its run, stop and close the model.

stop(tg);
if (mdlOpen)
 save_system(mdl);

 EtherCAT® Communication with Beckhoff® Digital IO Slave Devices EL1004 and EL2004

15-113

 close_system(mdl);
end

15 Simulink Real-Time Examples

15-114

EtherCAT® Communication - Motor Velocity Control with
Accelnet™ Drive

This example shows how to control the velocity of a motor using EtherCAT
communication.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer
as EtherCAT Master device and an Accelnet™ AEP 180-18 drive from Copley Controls as
EtherCAT Slave device. Connect a supported brushless or brush motor to the drive. An
example motor that works with this example is the SM231BE-NFLN from PARKER.

This example requires a dedicated network card that is installed and is available on the
target computer. Use the dedicated card for the EtherCAT communication. The dedicated
card is in addition to the card used for the Ethernet link between the development and
target computers.

To test this model:

1 Connect the network port of the dedicated card in the target computer to the
EtherCAT IN port of the Accelnet™ drive.

2 Connect a motor to the Accelnet™ drive.
3 Make sure that the Accelnet™ drive is supplied with a 24-volt power supply.
4 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT
master node model, and builds then runs the real-time application, see the Simulink Real-
Time EtherCAT documentation.

Open the Model

To open the model, in the Command Window, type:

open_system('xpcEthercatVelocityControl')

This model sends a varying velocity command to the drive.

The EtherCAT initialization block requires that the configuration ENI file is present in the
current folder. Copy the example configuration file from the example folder to the current
folder. Then, open the model.

 EtherCAT® Communication - Motor Velocity Control with Accelnet™ Drive

15-115

https://www.copleycontrols.com/support/
https://www.parkermotion.com/

copyfile(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','CopleyMotorVelocityConfig.xml'), '.', 'f');
copyfile(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcEthercatVelocityControl.slx'), '.', 'f');
mdl = 'xpcEthercatVelocityControl';
mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if isempty(strcmp(systems, mdl))
 mdlOpen = 1;
 open_system(mdl);
 set_param('xpcEthercatVelocityControl/EtherCAT Init ','pci_bus','5','pci_slot','0','pci_function','0')
end

Figure 1: EtherCAT model for motor velocity control.

Configure the Model

Open the mask for the EtherCAT Init block and provide the required values for the PCI
bus and slot numbers for the network card being used for EtherCAT communication. To
get these values, in the Command Window type tg.getPCIInfo('ethernet'). An
example command to set configuration parameters for the EtherCAT Init block is:

15 Simulink Real-Time Examples

15-116

set_param('xpcEthercatVelocityControl/EtherCAT Init ','pci_bus','5','pci_slot','0','pci_function','0')

Describe Network with Configurator

Using a third-party EtherCAT configurator that you install on a development computer,
generate an EtherCAT configuration file CopleyMotorVelocityConfig.xml.

This file describes the network to the master. For more information, see the Simulink
Real-Time EtherCAT documentation.

An overview of the process for creating the configuration file in the EtherCAT
configurator is:

1 Connect the EtherCAT network (consisting of the Accelnet™ drive in this example) to
the computer where the EtherCAT configurator is installed and scan the network to
discover the connected slave devices.

2 Select the transmit and receive Process Data Object (PDO) variables to be accessed
from the Accelnet™ drive.

3 Define at least one cyclic task and associate the selected PDO variables to the task.
4 Export the configuration file into an XML file. Make sure the name of the XML file is

different from the name of your Simulink® model.

Each EtherCAT configuration file is specific to the exact network setup for which it was
created (for example, the network discovered in step 1 of configuration file creation). The
configuration file provided for this example is valid if and only if the EtherCAT network
consists of an Accelnet™ AEP drive from Copley Controls.

For this example, three receive PDO variables are defined and used in the three
EtherCAT PDO Transmit blocks: Control Word, Modes of Operation and Target
Velocity.

• The Control Word PDO variable serves to control the state of the drive. The constant
value 15 is given as input to the block to set the first 4 bits to 1 to enable the drive.
Refer to the CANOpen manual from Copley Controls for details on the bits mapping of
this variable.

• The Modes of Operation PDO variable serves to set the drive operating mode. The
constant value 3 is given as input to the block to set the mode of the drive to 'Profile
Velocity mode'. Refer to the CANOpen manual from Copley Controls for details on
supported modes of operation.

• The Target Velocity PDO variable serves to set the desired velocity. In this example,
the velocity command at the input of the block can be tuned through the gain block.

 EtherCAT® Communication - Motor Velocity Control with Accelnet™ Drive

15-117

https://www.copleycontrols.com/support/
https://www.copleycontrols.com/support/

Three transmit PDO variables are also defined in the configuration file and used in the
three EtherCAT PDO Receive blocks: Status Word, Actual Motor Velocity, and Actual
Motor Position.

• The Status Word PDO variable indicates the current state of the drive.
• The Actual Motor Velocity and Actual Motor Position PDO variables indicate the

current values of the motor velocity and position as read in the drive.

Make sure that the required transmit and receive PDO variables are selected in the
blocks as illustrated in Figure 1 before running the example. (You could need to refresh
these variables.)

Build, Download, and Run the Model

Build the model and download to the target computer. Then, run the model.

set_param(mdl,'RTWVerbose','off');
rtwbuild(mdl);
tg = slrt('TargetPC1');
load(tg,mdl);
start(tg);

Starting Simulink Real-Time build procedure for model: xpcEthercatVelocityControl
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: xpcEthercatVelocityControl
Created MLDATX ..\xpcEthercatVelocityControl.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

The velocity command for the motor is a low frequency sine wave. The actual velocity
read back from the controller is delayed by one sample time and the actual position is out
of phase by 90 degrees from the velocity, as expected.

pause(20);

Display the Target Computer Scopes

Take a snapshot of the target computer video display.

• Scope 1 displays the outputs of the Ethercat Init block. See the documentation of
this block for the meaning of the displayed values.

15 Simulink Real-Time Examples

15-118

• Scope 2 displays the PDO variables received and transmitted to the drive, once the
drive initializes and the state goes to Op state (=8)

To take a snapshot of the target scopes, type:

tg.viewTargetScreen

 EtherCAT® Communication - Motor Velocity Control with Accelnet™ Drive

15-119

Stop and Close the Model

When the example completes its run, stop and close the model.

stop(tg);
if (mdlOpen)
 save_system(mdl);
 close_system(mdl);
end

15 Simulink Real-Time Examples

15-120

EtherCAT® Communication - Motor Position Control with
an Accelnet™ Drive and Beckhoff® Analog IO Devices

This example shows how to control the position of a motor using EtherCAT
communication.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer
as EtherCAT Master device and an Accelnet™ AEP 180-18 drive from Copley Controls as
EtherCAT Slave device. Connect a supported brushless or brush motor to the drive. An
example motor that works with this example is the SM231BE-NFLN from PARKER.

This example requires a dedicated network card that is installed and available on the
target computer. Use the dedicated card for the EtherCAT communication. The dedicated
card is in addition to the card used for the Ethernet link between the development and
target computers.

To test this model:

1 Connect the network port of the dedicated card in the target computer to the
EtherCAT IN port of the Accelnet™ drive.

2 Connect the EtherCAT OUT port of the Accelnet™ drive to the EtherCAT IN port of
the Beckhoff® EK1100 coupler.

3 Assemble the Beckhoff® EK1100 coupler and the Beckoff® IO terminals EL3062 and
EL4002.

4 Connect a motor to the Accelnet™ Drive.
5 Connect a variable power supply to the Input port 1 of the EL3062 terminal.
6 Make sure the Accelnet™ drive and the Beckhoff® terminals are supplied with a 24-

volt power source.
7 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT
master node model, and builds then runs the real-time application, see the Simulink Real-
Time EtherCAT documentation.

Open the Model

To open the model, in the Command Window, type:

 EtherCAT® Communication - Motor Position Control with an Accelnet™ Drive and Beckhoff® Analog IO Devices

15-121

https://www.copleycontrols.com/support/
https://www.parkermotion.com/

xpcEthercatPositionControl

This model creates a sine wave, and modulates it by multiplying by the value of the signal
present at the first input port of Terminal EL3062. The modulated signal is sent as motor
position command to the drive.

The EtherCAT initialization block requires that the configuration ENI file is present in the
current folder. Copy the example configuration file from the example folder to the current
folder. Then, open the model.

copyfile(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','CopleyMotorPositionConfig.xml'), '.', 'f');
copyfile(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcEthercatPositionControl.slx'), '.', 'f');
mdl = 'xpcEthercatPositionControl';
mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if isempty(strcmp(systems, mdl))
 mdlOpen = 1;
 open_system(mdl);
end

Figure 1: EtherCAT model for controlling the position of a motor through an analog input
terminal.

15 Simulink Real-Time Examples

15-122

Configure the Model

Open the mask for the EtherCAT Init block and provide the required values for the PCI
bus and slot numbers for the network card being used for EtherCAT communication. To
get these values, in the Command Window, type tg.getPCIInfo('all'). An example
command to set configuration parameters for the EtherCAT Init block is:

set_param('xpcEthercatPositionControl/EtherCAT Init ','pci_bus','5','pci_slot','0','pci_function','0')

Describe Network with Configurator

Using a third-party EtherCAT configurator that you install on a development computer,
generate an EtherCAT configuration file CopleyMotorPositionConfig.xml.

This file describes the network to the master. For more information, see the Simulink
Real-Time EtherCAT documentation.

An overview of the process for creating the configuration file in the EtherCAT
configurator is:

1 Connect the EtherCAT network (consisting of the Accelnet drive, terminal EK1100,
EL3062, and EL4002 in this example) to the computer where the EtherCAT
configurator is installed and scan the network to discover the connected slave
devices.

2 Select the transmit and receive variables to be accessed as signals from the
Beckhoff® IO terminals and the Process Data Objects (PDOs) variables to be
accessed from the Accelnet™ drive.

3 Define at least one cyclic task, select a task execution rate, and associate the selected
IO and PDO variables to the task. You only must select one variable from each PDO to
make every variable in that PDO accessible.

4 Export the configuration file into an XML file. Make sure the name of the XML file is
different from the name of your Simulink® model.

5 Close or disconnect configurator from the EtherCAT network or you could get
interference between Simulink Real-Time and configurator.

Each EtherCAT configuration file is specific to the exact network setup for which it was
created. (For example, the network discovered in step 1 of the configuration file creation
process.) The configuration file provided for this example is valid if and only if the
EtherCAT network consists of an Accelnet™ drive from Copley Controls and terminals
EK1100, EL3062, and EL4002 from Beckhoff®.

 EtherCAT® Communication - Motor Position Control with an Accelnet™ Drive and Beckhoff® Analog IO Devices

15-123

For this example, five receive PDO variables are defined in the configuration file and
three are used in the three EtherCAT PDO Transmit blocks: Control Word, Modes of
Operation, and Profile Target Position.

• The Control Word PDO variable serves to control the state of the drive. The constant
value 15 is given as input to the block to set the first 4 bits to 1 to enable the drive.
Refer to the CANOpen manual from Copley Controls for details on the bits mapping of
this variable.

• The Modes of Operation PDO variable serves to set the operating mode of the drive.
The constant value 8 is given as input to the block to set the mode of the drive to
'Cyclic Synchronous Position mode'. Refer to the CANOpen manual from Copley
Controls for details on supported modes of operation.

• The Profile Target Position PDO variable serves to set the desired position. In this
example, the position command given as input to the block is a sine wave modulated
by the signal read at the first input channel of terminal EL3062.

Transmit PDO variables are also defined in the configuration file and two are used in the
two EtherCAT PDO Receive blocks: 'Actual Motor Position' for the drive and 'Channel
1.Value' for the EL3062 terminal. The Actual Motor Position PDO variable indicates the
current value of the motor position as read in the drive. Make sure the required transmit
and receive PDO variables are selected in the blocks before running the example (you
could need to refresh these variables).

Build, Download, and Run the Model

Build the model and download to the target computer. Then, run the model. Let the model
run for 20 seconds.

set_param(mdl,'RTWVerbose','off');
rtwbuild(mdl);
tg = slrt('TargetPC1');
load(tg,mdl);
start(tg);
pause(20);

Starting Simulink Real-Time build procedure for model: xpcEthercatPositionControl
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: xpcEthercatPositionControl
Created MLDATX ..\xpcEthercatPositionControl.mldatx

15 Simulink Real-Time Examples

15-124

https://www.copleycontrols.com/support/
https://www.copleycontrols.com/support/

Looking for target: TargetPC1
Download model onto target: TargetPC1

Display the Target Computer Scopes

Take a snapshot of the target computer video display. The position command for the
motor is varied following the modulated sine wave. The motor turns alternatively in one
direction and its opposite. By varying the amplitude of the voltage at Input port 1 of
terminal EL3062 between 0 and 10 volts, the amplitude by which the position of the
motor changes increases or decreases in same proportion.

• Scope 1 displays the outputs of the Ethercat Init block. See the documentation of
this block for the meaning of the displayed values.

• Scope 2 displays the PDOs received from and sent to the Drive. Those PDOs are the
position command (sent to the Drive by the Master) and the actual motor position
(sent to the Master by the Drive). As expected, these two signals coincide, after the
small offset introduced by the transmission delay.

To take a snapshot of the target scopes, type:

tg.viewTargetScreen

 EtherCAT® Communication - Motor Position Control with an Accelnet™ Drive and Beckhoff® Analog IO Devices

15-125

Stop and Close the Model

When the example completes its run, stop and close the model.

stop(tg);
if (mdlOpen)
 save_system(mdl);

15 Simulink Real-Time Examples

15-126

 close_system(mdl);
end

 EtherCAT® Communication - Motor Position Control with an Accelnet™ Drive and Beckhoff® Analog IO Devices

15-127

Generate ENI Files for EtherCAT Devices
This example shows how to generate EtherCAT network information (ENI) files to use in
Simulink Real-Time with EtherCAT devices.

The example shows the generation process steps in EtherCAT Configurator and the
process steps in the TwinCAT XAE plugin for Microsoft Visual Studio®.

The hardware connections are:

• EK1100 -- EtherCAT coupler
• EL3062 -- EtherCAT terminal
• EL4002 -- EtherCAT terminal
• EL9011 -- Bus End terminal

The EK1100 coupler connects EtherCAT with the EtherCAT terminals (ELxxxx). One
station consists of an EK1100 coupler, any number of EtherCAT terminals, and a bus end
terminal.

To provide power connections, connect the 24 V and 0 V terminals of the EK1100 to a 24
V regulated power supply (RPS) +Ve and -Ve terminals.

The EL3062 analog input terminal processes signals in the range of 0-10 V. The voltage is
digitized to a resolution of 12 bits and is transmitted.

The EL4002 analog output terminal generates signals in the range of 0 and 10 V.

To configure the EtherCAT network, connect the EtherCAT devices to the development
computer on which the EtherCAT configurator is running. This connection permits
scanning and discovery of the EtherCAT devices. After the configurator generates the
XML file, you can reconnect the EtherCAT devices to the target computer. This diagram
shows the suggested connections.

15 Simulink Real-Time Examples

15-128

Install and Run EtherCAT Configurator ET9000

To install the EtherCAT configurator ET9000:

1 Go to https://www.beckhoff.com/ and select Download.
2 Select ET9000 and download the setup.
3 Install the ET9000 configurator and start the software.
4 Run the configurator and select the correct license keys or select the evaluation

option.

The EtherCAT configurator creates an EtherCAT network information (ENI) file from the
standardized slave description files (ESI - EtherCAT slave information). To generate the
ESI files for the slaves:

1 Start the ET9000 software.
2 Right-click I/O Devices and select Scan Devices. Click OK.
3 Select the correct network interface card (NIC) in your system and click OK.
4 When the dialog box asks whether to scan for boxes, select Yes. As the EtherCAT

devices in your network are scanned, they appear in the System Pane.

 Generate ENI Files for EtherCAT Devices

15-129

https://www.beckhoff.com/

5 When the dialog box asks whether to activate free run mode, select No.

When the scan is complete, expand the Device Hierarchy under I/O Devices in the
System Pane. The EL3062 and the EL4002 devices appear under the EK1100 device.

Configure EtherCAT Master Node Data with Configurator

The configurator uses the ESI to configure the EtherCAT master node. This operation
includes creating a task, configuring the task, and adding the I/O to the task.

To create an EtherCAT task:

15 Simulink Real-Time Examples

15-130

1 Under SYSTEM - Configuration, right-click Additional Tasks > Append Task.
2 Provide a name for the task and click OK. In this example, the name of the task is

slrt_task.
3 Click the task. The value Cycle Ticks determines the cycle time. In the settings, it is

set to 10ms.

To configure an EtherCAT task outputs:

1 Click and drag the node Analog output (under AO Outputs Channel 1) to Outputs
(under slrt_task).

2 Select Analog output (under Outputs) and select the Variable tab.
3 Click the Linked to button and select the corresponding entry (Analog Output

under AO Outputs Channel 1 under Term 3).

By using distributed clocks (DC), the EtherCAT real-time Ethernet protocol can
synchronize the time in all local bus devices within a narrow tolerance range. Only some
EtherCAT devices support DC. When the device supports DC, it is important to configure
a device for DC. For example, in the example configuration, the EL4002 supports DC. To
configure the EL4002 for DC:

1 Click Term 3 (EL4002) in the System Pane and select the DC tab. By default, the
Operation Mode is set to SM-Synchron. Change Operation Mode to DC-Synchron.

2 Click the Advanced Settings button and set the Distributed Clock options as
shown.

 Generate ENI Files for EtherCAT Devices

15-131

Import a Device with the Configurator

Device import is often part of the workflow for third-party (different manufacturer)
devices. Use this process to configure a device that is not present in the Beckhoff system.
Numerous motors and their drives fall under this category. Sometimes, you must
configure a device that is not present in the Beckhoff system. The TwinCAT EtherCAT
master or System Manager uses the device description files for the devices to generate
the configuration in online or offline mode.

The device descriptions are contained in ESI files (EtherCAT Slave Information) in XML
format. These files can be requested from the respective manufacturer and are made
available for download. An XML file can contain several device descriptions.

15 Simulink Real-Time Examples

15-132

The ESI files for Beckhoff EtherCAT devices are available on the Beckhoff website and are
stored in the TwinCAT installation folder. The default for TwinCAT2 is C:\TwinCAT\IO
\EtherCAT. The files are read (once) when you open a new System Manager window and
if they have changed since the last time that you opened the System Manager window.

If using a TwinCAT configurator, the TwinCAT installation includes the set of Beckhoff ESI
files which were current at the time when the TwinCAT build was created. For TwinCAT
2.11, TwinCAT 3, and later, you can update the ESI folder from the System Manager if the
programming PC is connected to the Internet (Option > Update EtherCAT Device
Descriptions).

To import a device from an ESI file:

1 For the ET9000 Configurator, the ESI folder is C:\Program Files
(x86)\EtherCAT Configurator\EtherCAT. Paste the file from the manufacturer
into this location.

2 After adding the XML file, restart your configurator and select Actions > Reload
Devices.

3 If the device is connected, you can scan again to add the devices. (See Install and
Apply Beckhoff EtherCAT Configurator ET9000.)

4 If the device is not connected, you can also add the device in Offline mode. If you
want to add the device to the same term, right-click your device in the hierarchy and
select Append Box. A dialog box appears asking which device to add.

5 Click the square icon next to Beckhoff Automation GmbH to collapse the hierarchy.
You now see the manufacturer whose devices you added.

6 Select the device that you want to add and click OK. Your device should now appear
in the System Pane on the left.

7 Repeat the steps under Configure EtherCAT Master Node Data to add the Outputs
to your task. In this example, drag the available outputs under your drive to Outputs
under slrt_task. Remember to make the appropriate DC Configurations for your
device.

8 DC configuration information is available from the manufacturer. In this case, enable
DC.

9 Continue with configuration of the terminals.

Export and Save the EtherCAT Configuration with the Configurator

To generate the ENI file and save the configuration:

 Generate ENI Files for EtherCAT Devices

15-133

1 Click the node for your EtherCAT device, then click the EtherCAT tab.
2 Click Export Configuration File.
3 In the file save dialog box, enter an XML file name, such as

BeckhoffAIOconfig.xml for this example, and then click Save. This XML file is the
ENI file. The ENI file and the Simulink® Real-Time™ model that uses the ENI file
cannot have the same name. They must have different names.

4 Save the configuration as an ESM file. Click File > Save. If the ESM file
corresponding to the ENI file is not present, the Beckhoff ET9000 program cannot
open the ENI file.

5 In the File Save dialog box, enter an ESM file name, such as et9000config.esm,
and then click Save.

Install TwinCAT 3.1 XAE and Run Microsoft Visual Studio® with TwinCAT

When you install TwinCAT 3.1 eXtended Automation Engineering (XAE), you can use the
integration of this software with Microsoft Visual Studio to program automation objects
with IEC 61131-3 and C/C++ languages.

To install the TwinCAT 3.1 XAE:

1 Go to https://www.beckhoff.com/ and select Download.
2 Select TwinCAT 3 and download the setup.
3 Install TwinCAT 3 and start Microsoft Visual Studio.
4 From the TwinCAT menu, select Show Realtime Ethernet Compatible Devices.
5 Select the Ethernet adapter for your EtherCAT device, then select Install.

To open a new TwinCAT project in Visual Studio:

1 Start Visual Studio. Go to File > New > Project.
2 Under Templates, select TwinCAT Project.
3 Verify whether the project has been created successfully in the status bar of

Microsoft Visual Studio.
4 Enter your license if this instance is the first time that you are using TwinCAT. If you

are using TwinCAT in evaluation mode, fill in the Captcha.
5 Observe the Solution Explorer pane the right side of Visual Studio.
6 Go to TWINCAT in the menu and select Scan. You can also right click Solution

Explorer > your TwinCAT project > I/O > Devices > Scan.

15 Simulink Real-Time Examples

15-134

https://www.beckhoff.com/

7 A dialog box opens with the message All devices may not automatically be found.
Click OK and wait for the scan to complete. You now see a dialog box saying New I/O
devices have been found.

8 Ensure that the check box is selected, then click OK. A dialog box appears with a
Scan for boxes? message. Click Yes. The EtherCAT devices in your network are
scanned, and the devices appear.

9 You see a dialog box that asks whether to activate free run mode. Select No.
10 Observe the Solution Explorer and verify that the devices were scanned correctly.

Configure EtherCAT Master Node Data with TwinCAT

To configure the EtherCAT master node, create and configure a task, then add the inputs
and outputs to the task.

 Generate ENI Files for EtherCAT Devices

15-135

To create an EtherCAT Task:

1 In the Solution Explorer, right-click the Task node.
2 In the Insert Task dialog box, select TwinCAT Task With Image, provide a name

for the task, and click OK.
3 Double-click the task that you created. The value Cycle Ticks determines the cycle

time. In this example, it is set to 10 ms.
4 Create at least one cyclic input/output task. Link this task to at least one input

channel and one output channel on each slave device.

By using distributed clocks (DC), the EtherCAT real-time Ethernet protocol can
synchronize the time in all local bus devices within a narrow tolerance range. Only some
EtherCAT devices support DC. It is important that if a device supports DC, you configured
it accordingly. For example, in the example configuration, the EL4002 supports DC.

To configure EtherCAT DC:

1 Double-click the node Term 3 (EL4002) and select the DC tab.
2 By default, the Operation Mode is set to SM-Synchron. Change the Operation

Mode to DC-Synchron.
3 Click Advanced Settings and set the Distributed Clock options as shown.

15 Simulink Real-Time Examples

15-136

To export and save the EtherCAT configuration, generate the ENI file:

1 Double-click the node for your EtherCAT device and click the EtherCAT tab.
2 Click Export Configuration File.
3 In the Save As dialog box, enter an XML file name, such as twincatconfig.xml,

then click Save. This XML file is the ENI file. The ENI file and the Simulink® Real-
Time™ model that uses the ENI file cannot have the same name. They must have
different names.

4 If the Solution file corresponding to the ENI file is not saved, the TwinCat XAE
program cannot open the ENI XML file. Save the Solution file as an archive (zip file).
Select File > Save Project As Archive.

 Generate ENI Files for EtherCAT Devices

15-137

5 In the Save As dialog box, enter an ESM file name, such as twincatproject, and
click Save. The project is saved as a .tnzip archive.

Related Information

• “EtherCAT® Communication with Beckhoff® Analog IO Slave Devices EL3062 and
EL4002” on page 15-101

• “EtherCAT® Communication with Beckhoff® Digital IO Slave Devices EL1004 and
EL2004” on page 15-108

• “EtherCAT® Communication - Motor Velocity Control with Accelnet™ Drive” on page
15-115

• “EtherCAT® Communication - Motor Position Control with an Accelnet™ Drive and
Beckhoff® Analog IO Devices” on page 15-121

15 Simulink Real-Time Examples

15-138

Digital I/O with Speedgoat FPGA Board
This example shows a workflow that uses HDL Coder™ to deploy a Simulink® subsystem
to a Speedgoat FPGA I/O board that resides in the target computer. A Simulink® Real-
Time™ application runs on the target computer and communicates with the FPGA over
the PCI bus.

In this case, the FPGA algorithm maps Simulink Real-Time generated pulse trains to I/O
channels on the FPGA. Over the PCI bus, the FPGA receives pulses generated on the
target computer. It then writes the signals to eight output channels. The FPGA reads eight
input channels and sends them over the PCI bus to the target computer for graphical
display. You accomplish loopback by wiring inputs to outputs (output channel 0 to input
channel 0, output channel 1 to input channel 1, and so on).

This example uses the Speedgoat IO331. You can use any FPGA I/O module supported by
Simulink Real-Time and HDL Coder that meets the speed, size, and pinout requirements
of the model.

The default FPGA clock rate is 75 MHz. The Simulink Real-Time simulation is set to 1
kHz.

Requirements and Preconditions

HDL Coder™

For the IO331 board, HDL Workflow Advisor requires the Xilinx® ISE toolset. To install
this toolset, in the Command Window, type:

hdlsetuptoolpath('ToolName', 'Xilinx ISE', 'ToolPath', toolpath)

where toolpath is the full path to the synthesis tool executable.

For the toolset requirements of other boards, see Supported Third-Party Tools and
Hardware (HDL Coder).

Open the FPGA Domain Model

Click here to open the FPGA model: dslrtSGFPGAloopback_fpga.

This model contains the algorithm (green subsystem) that will eventually run on the
FPGA. It also contains some test blocks to verify, in simulation, the algorithm is working
as expected before synthesizing the FPGA bitstream. Note that this model is an "FPGA

 Digital I/O with Speedgoat FPGA Board

15-139

domain" model, meaning the simulation sample rate is representative of the clock rate of
the FPGA (75 MHz). Hence, 1 second of simulation requires 75e6 iterations of the model.

Once the algorithm is complete, use the HDL Workflow Advisor to:

• Select the FPGA I/O board
• Map the subsystem inports and outports
• Synthesize the FPGA bitstream
• Generate the Simulink Real-Time interface subsystem

Using the HDL Workflow Advisor

To invoke the HDL Workflow Advisor, right-click on the "loopback" subsystem and select
HDL Code > HDL Workflow Advisor.

Task 1.1. Set Target Device and Synthesis Tool

Select Simulink Real-Time by choosing Simulink Real-Time FPGA I/O for Target
workflow. Set the target platform to the Speedgoat IO331 and check that HDL Workflow
advisor sets the synthesis tool to the Xilinx® ISE Design Suite. This setting configures the
board characteristics and synthesis tool used in subsequent tasks.

15 Simulink Real-Time Examples

15-140

When done, click Run This Task and continue with Task 1.2.

Task 1.2. Set Target Interface

Use the Target Platform Interface Table to specify and map the inports and outports.
For this example,

• hwIn C0-7 are signals read from the LVCMOS I/O channels 0-7 (input channels)
• hwOut C0-7 are signals written to the LVCMOS I/O channels 8-15 (output channels)
• pciRead C0-7 are signals read from the target computer over the PCI bus (input

channels)

 Digital I/O with Speedgoat FPGA Board

15-141

• pciWrite C0-7 are signals written to the target computer over the PCI bus (output
channels)

When done, click Run This Task and continue with Task 5.2.

Task 5.2. Generate Simulink Real-Time Interface

Right-click Task 5.2 and click Run to Selected Task. The HDL Workflow Advisor will run
the tasks, synthesize the FPGA bitstream, and generate a new model which contains a
Simulink Real-Time interface subsystem.

15 Simulink Real-Time Examples

15-142

When the tasks complete, a newly generated model containing the Simulink Real-Time
interface subsystem appears. On the surface, this subsystem looks like the FPGA
subsystem. However, inside, the Simulink algorithm has been removed and replaced with
blocks that the real-time application will use to communicate with the FPGA during
simulation execution.

 Digital I/O with Speedgoat FPGA Board

15-143

Open the Simulink Real-Time Model

Create or open a Simulink Real-Time model that will run on the target computer while the
bitstream algorithm runs on the FPGA.

Click here to open the Simulink Real-Time model: dslrtSGFPGAloopback_slrt.

Add the Simulink Real-Time Interface Subsystem

From the generated model, copy the Simulink Real-Time interface subsystem and paste it
in the Simulink Real-Time model. Connect inports and outports. Double-click the interface
subsystem and set mask parameters as required.

Click here to open the Simulink Real-Time model with the interface subsystem included:
dslrtSGFPGAloopback_slrt_wiss.

15 Simulink Real-Time Examples

15-144

Test the Model

Build the model. When the build is complete, the Simulink Real-Time application is
downloaded to the target computer and the bitstream is downloaded to the FPGA.

Run the application. The eight pulse train signals sent and received through the FPGA
and the LVCMOS I/O channels are displayed on the target scope.

 Digital I/O with Speedgoat FPGA Board

15-145

PLL-Based Interrupt Generation from FPGA Input
This example shows how Simulink® Real-Time™ can drive a target application not only
with interrupts based on its internal timer, but also with interrupts based on an external
signal.

In the simplest use case, we would like to run the real-time application synchronized 1-1
to the external signal; for instance, every time we receive a rising edge from an external
signal, an interrupt is generated which then runs one step of the application. Using a
phase-locked loop (PLL), we can drive the real-time application at a frequency that is
different from the input frequency, but at the same time synchronized to the external
signal. For instance, we may have an external signal at 600 Hz, but we would like to run
the application at 2 kHz.

This example uses a Speedgoat FPGA based I/O module (the Speedgoat IO331) and a
digital PLL modeled in Simulink®. From the model, HDL Coder™ generates and
synthesizes HDL code. You can use any FPGA I/O module supported by Simulink Real-
Time and HDL Coder that meets the speed, size, and pinout requirements of the model.

Requirements and Preconditions

• HDL Coder™
• DSP System Toolbox™

For the IO331 board, HDL Workflow Advisor requires the Xilinx® ISE toolset. To install
this toolset, in the Command Window, type:

hdlsetuptoolpath('ToolName', 'Xilinx ISE', 'ToolPath', toolpath)

where toolpath is the full path to the synthesis tool executable.

For the toolset requirements of other boards, see Supported Third-Party Tools and
Hardware (HDL Coder).

PLL and frequency synthesis

A PLL is required to lock the generated frequency since the desired frequency is any
arbitrary ratio (synN/synM, within some range) of the input frequency. We will first
create a model with the PLL in the 'Frequency synthesis' subsystem. The model contains
top level blocks that aid the simulation of the model on the desktop as well as provide
inputs to the FPGA in order to tune parameters while running in real-time on the target.

15 Simulink Real-Time Examples

15-146

An external signal of frequency Fr is input into one of the TTL I/O lines configured as
input. We wish to drive the model at a frequency . synN and
synM are integers that may be varied to obtain frequencies different from Fr. The model
dslrtExtDIOInt uses a phase-locked loop (PLL) to lock the frequency generated by the
NCO HDL Optimized block to the desired frequency Fd.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','dslrtExtDIOInt'))

Frequency synthesis

The Frequency synthesis subsystem consists of a Phase detector subsystem, a numerically
controlled oscillator (NCO) and frequency dividers. HDL code will be generated for this
subsystem.

Phase Detector

The phase detector subsystem compares the phase of two signals by using an XOR block.
The 'countDutyCycle' function block implements a loop filter in the form of counting the
number of high samples between two rising edges of the XOR output. It also compares
the occurrence of the rising edges of the two input signals to the subsystem in order to
provide a sign to the phase difference.

 PLL-Based Interrupt Generation from FPGA Input

15-147

Transfer function of the 'countDutyCycle' function:

x = [-5/4 -1 -(1/2+eps) -1/2 0 1/2 (1/2+eps) 1 5/4];
y = [-.5 0 1 -1 0 1 -1 0 .5];
h = plot(x,y);
a=get(h, 'parent');
a.XTickLabel = { '' '-\pi' '-\pi/2' '0' '\pi/2' '\pi' ''};
a.YTick = [-1 0 1];
a.YTickLabel = {'-N' '0' 'N'};
a.XGrid ='on';
a.YGrid ='on';
xlabel('Phase difference (rad)');
ylabel('Output (Duty cycle in number of samples)');
title('Phase Detector output');
snapnow;

15 Simulink Real-Time Examples

15-148

The phase detector output wraps around outside of the range indicating the
working range of the XOR detector. Due to this the input frequency should be within a
certain working range of the PLL. The value N on the y-axis depends on the instantaneous
frequency of the input signal and the center frequency Fc. The range is derived in the
section 'PLL working frequency range'.

NCO HDL Optimized: The numerically controlled oscillator generates a quiescent
frequency as determined by the input 'Center freq'. When the input signal 'Ref In' varies
from the center frequency, the 'Phase Detector' output generates a signal to make up for
the difference in frequency. The generated correction signal is added to the value for the
center frequency to produce the appropriate frequency. This subsystem is used only for
debugging and monitoring and can be safely left out of the application.

 PLL-Based Interrupt Generation from FPGA Input

15-149

Frequency Dividers: These divide the frequency of the square wave input into 'Ref In'
and the generated signal to produce the required frequency transformation.

'Print Target Frequency' subsystem

This subsystem contains blocks which determine the time interval between consecutive
sample hits and prints the instantaneous model execution frequency in kilohertz. For
accurate measurement the block 'CPU Clk Freq' should be set to the CPU clock frequency
of the target divided by 1e3 (for conversion to kHz).

PLL working frequency range

The following is a list of variables and default values used by the model (defined in the
PreLoadFcn model callback):

 synN = 3; % frequency division ratio
 synM = 2; % frequency division ratio
 Fs = 33e6; % Sampling Frequency
 Fr = 16.5e3; % Input frequency = 16.5 kHz
 df = .5; % Frequency resolution = .5 Hz
 minSFDR = 96; % Spurious free dynamic range >= 96 dB

 Ts = 1/Fs; % Sample period = 3.0303e-08 seconds
 Fc = Fr * synN / synM; % Oscillator Center frequency = 24.75 kHz

 % For simulation only:
 inputPeriod = round(Fs/Fr);
 % Ensure period is even for the pulse generator to produce 50% duty cycle
 inputPeriod = inputPeriod + mod(inputPeriod, 2);
 % 'Period' parameter of Pulse Generator block = 1334

 % Calculate number of accumulator bits required for the frequency resolution.
 Nacc = ceil(log2(1/(df*Ts))); % NCO Accumulator word length = 26
 actdf = 1/(Ts*2^Nacc); % Actual frequency resolution achieved = 0.4917 Hz

 % Calculate number of quantizer accumulator bits required from the SFDR requirement.
 Nqacc = ceil((minSFDR-12)/6); % number of quantizer accumulator bits = 14

 % Calculate the phase increment.
 inc = round(Fc*Ts*2^Nacc); % inc = 75497

The working range of this PLL may be derived as follows:

The limits at - /2 and /2 are reached when the delay in the generated signal
corresponds to half the number of samples in one period of the signals. This can occur at

15 Simulink Real-Time Examples

15-150

a frequency and above and below the center frequency, respectively. Consider the
lower frequency . To simulate this frequency using the pulse generator block the
variable 'inputPeriod' needs to be increased by a value 'x'. As a result:

The Phase Detector produces an output equal to the duty cycle within the range
 or one period of the square wave being compared. The correction factor =

. This is combined with the phase increment value corresponding to
the center frequency to produce the frequency equal to the input. Equating the two
previous results gives:

Solving this quadratic equation and taking the smaller root gives from which is
calculated:

 x_l = min(roots([1 -(inc - (2*inputPeriod)) - (inputPeriod*(inc - inputPeriod)) + (2^Nacc*(synN/synM))]));
 % The lower bound for the frequency range is:
 Fl = Fs / (inputPeriod + x_l);

Similarly the upper frequency bound may be calculated:

 x_h = min(roots([1 -(inc + (2*inputPeriod)) +(inputPeriod*(inc + inputPeriod))-(2^Nacc*(synN/synM))]));
 % The upper bound for the frequency range is:
 Fh = Fs / (inputPeriod - x_h);

Open the model

Click here to open the model: dslrtExtDIOInt.

Generate HDL Code using HDL Workflow Advisor

For this example the device used is a Speedgoat IO331 FPGA board. The HDL code
generation procedure is as described in the example “Digital I/O with Speedgoat FPGA
Board” on page 15-139. The differences include the board used and the input and output
pin mappings which are described in this section.

Target Device

 PLL-Based Interrupt Generation from FPGA Input

15-151

Set the target platform to the Speedgoat IO331 FPGA and check that HDL Workflow
advisor sets the synthesis tool to the Xilinx® ISE Design Suite. This setting configures the
board characteristics and synthesis tool used in subsequent tasks.

Target interface

The reference signal is input at the first pin (pin 0). The NCO output is mapped as the
'Interrupt from FPGA'. This signal becomes the interrupt for driving the model execution
on the CPU.

15 Simulink Real-Time Examples

15-152

Target Frequency

The model is designed using a fixed step size corresponding to a sampling frequency of 33
MHz. Set 'Target Frequency' to this value. This is the frequency at which the 'Frequency
synthesis' subsystem will run on the FPGA.

 PLL-Based Interrupt Generation from FPGA Input

15-153

Generate FPGA Model

The model generated by HDL Workflow Advisor is now ready to be built and downloaded
to the target. However, since the intention is to run the real-time application around the
center frequency Fc it is appropriate to change the sample time of the generated model to
1/Fc before building and downloading. This may be done by executing:

 Ts = 1/Fc;

After you have set Ts:

15 Simulink Real-Time Examples

15-154

1 In the Simulink Editor, open the Configuration Parameters. On the Real-Time tab,
click Hardware Settings.

2 Select Code Generation > System target file to grt.tlc.
3 Right-click Download to Target > Generate Simulink Real-Time Interface, and

then click Run to selected task.

This action produces a generated model, gm_dslrtExtDIOInt_slrt.

Model Configuration Parameters

In the Configuration Parameters dialog box of the generated model, configure the target
computer to be driven by the FPGA board interrupt:

1 In the Simulink Editor, open the Configuration Parameters. On the Real-Time tab,
click Hardware Settings.

2 Select Code Generation > System target file to slrt.tlc.
3 Set Simulink Real-Time Options > Real-time Interrupt source to Auto (PCI

only).
4 Set I/O board generating the interrupt to Speedgoat IO331.

 PLL-Based Interrupt Generation from FPGA Input

15-155

You can now build and download the generated model to the target computer as a real-
time application.

Model Execution

The values used in this example cause the input frequency to be centered at 16.5 kHz.
The target scopes show the correction signal and the instantaneous frequency when the

15 Simulink Real-Time Examples

15-156

input signal frequency is increased from 16 kHz to 17 kHz. The real-time application is
being executed at a frequency that is close to .

• This model is able to handle only square pulses that have an approximate duty cycle of
50%.

• The operation of the PLL is valid only in the frequency range as derived in the earlier
sections.

%
bdclose all;

 PLL-Based Interrupt Generation from FPGA Input

15-157

IEEE® 1588™ Precision Time Protocol - Execution
Synchronization

This example shows Execution synchronization between target computers using the
Precision Time Protocol (PTP) with Raw Ethernet as transport protocol.

Requirements

To run this example, you need to:

• Acquire two Speedgoat target computers equipped with the Intel® 82574 Ethernet
card from www.speedgoat.com.

• Acquire a PTP transparent clock switch, such as the EDS-405A-PTP from
www.moxa.com. (In the next section, see an alternative setup in case you do not have a
PTP switch.)

• Acquire a standard network switch that has at least 3 ports, such as the LINKSYS®
SD2005 5-ports switch.

Connect and configure the devices in the network

In this example, the two target computers are named TargetPC1 and TargetPC2.

1 Connect the network port of the development computer to a port of the LYNKSYS®
Ethernet switch.

2 Connect the network port of each target computer that is dedicated to
communicating with the development computer to a port of the LINKSYS® Ethernet
switch.

3 Connect the network port of the Intel® 82574 Ethernet card in TargetPC1 and
TargetPC2 to ports of the EDS-405A-PTP switch respectively. If you do not have a PTP
switch, either connect directly the port of the Intel® 82574 Ethernet card of
TargetPC1 to the port of the same card in TargetPC2, or connect these two ports to
ports of the LYNKSYS® Ethernet switch.

4 Configure the EDS-405A-PTP switch as an end-to-end transparent clock.
5 Enable PTP for the ports connected to TargetPC1 and TargetPC2.

Open and configure the models

Click on the following links to open the two models:

15 Simulink Real-Time Examples

15-158

https://www.speedgoat.com
https://www.moxa.com

• Master node model: dPTPMasterEthernet.slx.
• Slave node model : dPTPSlaveEthernet.slx.

The two models are configured for download on target computers TargetPC1 and
TargetPC2 respectively. If one of these target computers, for example TargetPC2, does not
exist in the Simulink® Real-Time™ environment configuration on your development
computer, you can create and configure it by using Simulink® Real-Time™ Explorer or by
typing the following command at the MATLAB® command line:

tg2 = SimulinkRealTime.addTarget('TargetPC2');

For each model, open the mask for the IEEE 1588 Ethernet block and insert the required
values for the PCI bus and slot numbers assigned to the Intel 82574 Ethernet card. For
example, model dPTPSlaveEthernet is configured to run on target computer TargetPC2.
To obtain the bus and slot numbers, type the following commands at the MATLAB®
command line and look for the information for the Intel® 82574 Ethernet card:

tg2 = SimulinkRealTime.target('TargetPC2');
getPCIInfo(tg2, 'ethernet');

Model dPTPMasterEthernet is the PTP Master. It displays status and synchronization
errors on target computer scopes and receives data from model dPTPSlaveEthernet.

openedMdl = find_system('type', 'block_diagram');
masterMdl = fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','dPTPMasterEthernet');
masterMdlOpen = 0;

Check if the model is already opened. If not, open it.

if ~any(strcmp(masterMdl, openedMdl))
 masterMdlOpen = 1;
 open_system(masterMdl);
end

 IEEE® 1588™ Precision Time Protocol - Execution Synchronization

15-159

Models dPTPSlaveEthernet is configured as PTP Slave node. It displays status and
synchronization errors on target scopes and sends three signals to model
dPTPMasterEthernet:

15 Simulink Real-Time Examples

15-160

• Synchronization status: Indicates when the slave PTP clock is synchronized to the
master PTP clock within the configured threshold of one microsecond.

• PTP time at timer interrupt: Indicates the value in seconds of the PTP time when the
real-time interrupt occurs.

• Offset error: Indicates the synchronization error between the PTP time and the kernel
clock that generates real-time interrupts.

The Read PTP time at rising edge subsystem shows how you can log timestamps of an
event with PTP. The IEEE 1588 Read Parameter block in the subsystem is configuread to
read the PTP time when the block execution starts.

slaveMdl = fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','dPTPSlaveEthernet');
slaveMdlOpen = 0;

Check if the model is already opened. If not, open it.

if ~any(strcmp(slaveMdl, openedMdl))
 slaveMdlOpen = 1;
 open_system(slaveMdl);
end

 IEEE® 1588™ Precision Time Protocol - Execution Synchronization

15-161

Build and download the models onto the target computer

• Configure for a non-verbose build.

15 Simulink Real-Time Examples

15-162

• Set Ethernet configuration to match target computer settings.
• Build and download the models onto the target computers.

set_param(masterMdl,'RTWVerbose','off');
set_param('masterMdl/IEEE 1588 Ethernet','PciBus','5','PciSlot','0');
rtwbuild(masterMdl);
tg1 = slrt('TargetPC1');
load(tg1,'masterMdl');

set_param(slaveMdl,'RTWVerbose','off');
set_param('slaveMdl/IEEE 1588 Ethernet','PciBus','8','PciSlot','10');
rtwbuild(slaveMdl);
tg2 = slrt('TargetPC1');
load(tg2,'slaveMdl');

Run and stop application

Run the two models for 50 seconds

tg1.start;
tg2.start;
pause(50);

Stop the models

tg1.stop;
tg2.stop;

Display the target computer scopes and stop the execution

View the target computer display.

For model dPTPSlaveEthernet on TargetPC2, use the command:

tg2.viewTargetScreen;

• Scope 1 shows the protocol state and the synchronization status. The protocol state
value is 9 for a Slave node. The synchronization status is 1 if the Slave PTP clock is
synchronized to the Master PTP clock within the specified threshold of 1 microsecond.
Otherwise, it is 0.

• Scope 2 displays the PTP time when the Read PTP time at rising edge triggered
subsystem is triggered.

• Scope 3 shows the current time offset between the Slave PTP clock and the Master
PTP clock in nanoseconds.

 IEEE® 1588™ Precision Time Protocol - Execution Synchronization

15-163

• Scope 4 shows the current time offset between the real-time interrupt clock and the
PTP clock in seconds.

For model dPTPMasterEthernet on TargetPC1, use the command:

tg1.viewTargetScreen;

• Scope 1 shows the protocol state. The protocol state value is 6 for the Master node.
• Scope 2 displays the current PTP time in date format.
• Scope 3 shows the current time offset between the real-time interrupt clock and the

PTP clock in seconds, for the Master node and the Slave node (received from model
dPTPSlaveEthernet).

• Scope 4 shows the difference between the PTP time when the real-time interrupt
occurs on the Master node and the Slave node respectively.

When the Slave PTP clock is synchronized to the Master PTP clock and both the Slave and
Master real-time interrupt clocks are synchronized to their respective PTP clocks, the
signal on Scope 4 indicates the precision to which the execution of the two models is
synchronized.

Obtain and plot logged data

The following figure shows the value displayed on Scope 4 of model dPTPMasterEthernet
when the two nodes have their PTP clocks and kernel clocks synchronized.

15 Simulink Real-Time Examples

15-164

Retrieve logged data for slave nodesdPTPMa

logDataMaster = tg1.OutputLog;
syncIndex = find(logDataMaster(:,1) ~= 0, 1, 'first');
clockDiff = logDataMaster(syncIndex +100:end,2);

Does the plot figure exist?

• If no, create figure.
• If yes, make it the current figure.

figh = findobj('Name', 'ptpexample');
if isempty(figh)
 figh = figure;

 IEEE® 1588™ Precision Time Protocol - Execution Synchronization

15-165

 set(figh, 'Name', 'ptpexample', 'NumberTitle', 'off');
else
 figure(figh);
end

Plot difference of PTP time at real-time interrupt for the two models

plot(clockDiff, '.');
xlabel('Sample');
ylabel('Time difference (seconds)');
title('Execution synchronization precision');

drawnow;

Close the models

Close the model if we opened them.

if (masterMdlOpen)
 bdclose(masterMdl);
end
if (slaveMdlOpen)
 bdclose(slaveMdl);
end

15 Simulink Real-Time Examples

15-166

IEEE® 1588™ Precision Time Protocol - Clock
Synchronization

This example shows clock synchronization between target computers using the Precision
Time Protocol (PTP) with UDP as transport protocol

Requirements

To run this example, you need to:

1 Acquire two Speedgoat target computers equipped with the Intel® i210 Ethernet
card from www.speedgoat.com. Alternatively, you can use the Intel 82574L Ethernet
card.

2 Acquire a standard network switch that has at least 4 ports, such as the Cisco®
SG110D-08 8-ports network switch.

Connect and configure the devices in the network

In this example, the two target computers are named TargetPC1 and TargetPC2.
TargetPC1 has one Intel® i210 network card that is used for host-target connection and
PTP synchronization. TargetPC2 has a dedicated Intel® i210 card for PTP
synchronization.

1 Connect the network port of the development computer to a port of the Cisco®
Ethernet switch.

2 Connect the network port of each target computer that is dedicated to
communicating with the development computer to a port of the Cisco® SG110D-08
Ethernet switch.

3 Connect the network port of the Intel® i210 Ethernet card in TargetPC2 to a port of
the the Cisco® Ethernet switch.

Note: For better PTP synchronization accuracy, consider using a network switch that
support PTP in place of the Cisco® SG110D-08 switch. An example of PTP capable
network swicth is the EDS-405A-PTP from www.moxa.com.

Open the models

Click on the following links to open the two models:

• Node 1 model: dPTPUDPNode1.slx.

 IEEE® 1588™ Precision Time Protocol - Clock Synchronization

15-167

https://www.speedgoat.com/
https://www.moxa.com/

• Node 2 model : dPTPUDPNode2.slx.

Open the dPTPUDPNode1 model:

openedMdl = find_system('type', 'block_diagram');
model1 = fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','dPTPUDPNode1');
model1Open = 0;
modelName1 = 'dPTPUDPNode1';

Check if the model is already opened. If not, open it.

if ~any(strcmp(model1, openedMdl))
 model1Open = 1;
 open_system(model1);
end

Open the dPTPUDPNode2 model:

model2 = fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','dPTPUDPNode2');
model2Open = 0;
modelName2 = 'dPTPUDPNode2';

15 Simulink Real-Time Examples

15-168

Check if the model is already opened. If not, open it.

if ~any(strcmp(model2, openedMdl))
 model2Open = 1;
 open_system(model2);
end

Configure the models

The two models are configured for download on target computers TargetPC1 and
TargetPC2 respectively. If one of these target computers setting, does not exist in the
Simulink® Real-Time™ environment configuration on your development computer, you
can create and configure it by using Simulink® Real-Time™ Explorer or MATLAB®
command line. For example, to add TargetPC2 to your environment, type the following
command at the MATLAB® command line:

tg2 = SimulinkRealTime.addTarget('TargetPC2');

Model dPTPUDPNode1 is configured to use the host-target connection for PTP. Configure
TargetPC1 to boot using the Intel® i210 card for host-target communication. If you are

 IEEE® 1588™ Precision Time Protocol - Clock Synchronization

15-169

using network boot, you can configure the target settings using Simulink® Real-Time™
Explorer or by typing the following commands at the MATLAB® command line:

env = SimulinkRealTime.getTargetSettings('TargetPC1');
env.TargetBoot = 'NetworkBoot';
env.TcpIpTargetDriver = 'I210';
SimulinkRealTime.createBootImage(env);

For model dPTPUDPNode2, open the mask for the IEEE 1588 UDP block and insert the
required values for the PCI bus, slot and function numbers assigned to the Intel® i210
card dedicated to PTP synchronization. To obtain the bus, slot and function numbers, type
the following commands at the MATLAB® command line and look for the information for
the Intel® i210 Ethernet card (or Intel 82574L card if that is the card you are using for
PTP):

tg2 = SimulinkRealTime.target('TargetPC2');
getPCIInfo(tg2, 'ethernet');

Each model displays on target computer scopes:

• The PTP protocol state.
• The PTP clock synchronization status (relevant for Slave clock only).
• The PTP time in date format.
• The offset from the Master (relevant for Slave clock only).
• A signal received from the other model.

The PTP hardware clock running on the Intel® i210 Ethernet card is initialized with the
target computer system time. Before you run the example, you can check the target
computer system time by typing the following command at the MATLAB® command line:

tg1 = SimulinkRealTime.target('TargetPC1');
d = SimulinkRealTime.utils.getTargetSystemTime(tg1)

If the target computer system time is incorrect, you can set it to your desired value. For
example, to set the target computer system time to be the same as the development
computer system time in UTC time zone, type the following command at the MATLAB®
command line:

SimulinkRealTime.utils.setTargetSystemTime(tg1);

15 Simulink Real-Time Examples

15-170

Build and download the models onto the target computer

• Configure for a non-verbose build.
• Build and download the models onto the target computers.

set_param(modelName1,'RTWVerbose','off');
rtwbuild(modelName1);
tg1 = slrt('TargetPC1');
load(tg1,modelName1);
set_param(modelName2,'RTWVerbose','off');
set_param([modelName2,'/IEEE 1588 Real-Time UDP'],'PciBus','8','PciSlot','10');
rtwbuild(modelName2);
tg2 = slrt('TargetPC1');
load(tg2,modelName2);

Run The application

Run the two models for 50 seconds tg1.start; tg2.start; pause(50);

One of The models will be the PTP Master clock and the other one the Slave clock. Since
the PTP clock parameters for the two models are identical, this state decision will be
made based on the MAC address of the Ethernet cards. In our setup, dPTPUDPNode1 is
selected as the Slave clock.

Stop the application

tg1.stop;
tg2.stop;

Display the target computer scopes

View the target computer display.

• Scope 1 shows the protocol state and the synchronization status. The protocol state
value is equal to 9 for the Slave clock and equal to 6 for the Master clock. The
synchronization status is always equal to 1 for the Master clock after the state switch
to 6. For the Slave clock, the sysnchronization status is initially equal to 0, and then
switch to 1 when the clock servo locks to the Master clock within the threshold
specified in the block parameter. Note that when the model starts and the protocol
state switches to Slave clock, a couple of seconds elapse before the clock servo locks
to the master clock.

• The offset from master value displayed on Scope 3 is relevant only for the Slave clock.
For the Master clock it is always equal to 0.

 IEEE® 1588™ Precision Time Protocol - Clock Synchronization

15-171

For model dPTPUDPNode1 on TargetPC1, use the command:

tg1.viewTargetScreen;

For model dPTPUDPNode2 on TargetPC2, use the command:

tg2.viewTargetScreen;

Obtain and plot the offset from Master.

The following figure shows the value displayed on Scope 3 for the Slave clock when the
clock servo lock to the Master clock.

15 Simulink Real-Time Examples

15-172

The accuracy of clock synchronization depends on the network switch that you use to
connect with the target computers, because the switch can introduce delay in the packet
transmission. To achieve more accurate clock synchronization, acquire a PTP transparent
clock switch, such as the EDS-405A-PTP from www.moxa.com.

figh = findobj('Name', 'PTPExampleUDP');
if isempty(figh)
 figh = figure;
 set(figh, 'Name', 'PTPExampleUDP', 'NumberTitle', 'off');
else
 figure(figh);
end
data = tg1.OutputLog;
if ~any(data(:, 1))
 data = tg2.OutputLog;
end
Find index when clock enter Slave state and servo locked
offsetIndex = find(data(:,1) ~= 0, 1, 'first');
syncIndex = offsetIndex + find(data(offsetIndex:end,2) ~= 0, 1, 'first');
offset = data(syncIndex:end, 1);
plot(offset, '.');
xlabel('Sample');
ylabel('Offset from Master clock (nanoseconds)');
title('PTP clock synchronization accuracy');
drawnow limitrate;%

 IEEE® 1588™ Precision Time Protocol - Clock Synchronization

15-173

Close the models

Close the model if we opened them.

if (model1Open)
 bdclose(model1);
end
if (model2Open)
 bdclose(model2);
end

15 Simulink Real-Time Examples

15-174

Real-Time Transmit and Receive over Ethernet
Communicate between two Simulink® Real-Time™ models over Ethernet.

This example shows how to use blocks in the library xpcethernetlib to communicate
between two target computers over Ethernet. Signal data is sent by the transmitter
model, xpcEnetDemo1Tx, running on one target computer, TargetPC1, to the receiver
model, xpcEnetDemo1Rx, running on the second target computer, TargetPC2. The blocks
in xpcethernetlib enable "raw" Ethernet for real-time IO.

Requirements

To run this example, you will need two target computers, each with an installed and
configured dedicated Ethernet card (in addition to the Ethernet card used for the
Ethernet link between the development and target computers). Refer to the Simulink
Real-Time documentation on model-based Ethernet communications for details. Once
configured, set the PCI Bus and Slot in the "Real-Time Ethernet Configuration" block of
xpcEnetDemo1Tx and xpcEnetDemo1Rx to that of the Ethernet card installed in
TargetPC1 and TargetPC2 respectively.

Open, Build, and Download the Tx Model to TargetPC1

Click here to open the Tx model: xpcEnetDemo1Tx. This model drives an oscillator with a
square wave signal and sends the oscillator input and output signals to the Rx target
computer using raw Ethernet.

Open the model.

mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp(systems, 'xpcEnetDemo1Tx'))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcEnetDemo1Tx'))
end

Build the model and download to the Tx target computer, TargetPC1.

• Configure for a non-Verbose build.
• Set Ethernet configuration to match target computer settings
• Build and download application.
• Close the model if we opened it.

 Real-Time Transmit and Receive over Ethernet

15-175

set_param('xpcEnetDemo1Tx','RTWVerbose','off');
set_param('xpcEnetDemo1Tx/Real-time Ethernet Configuration','Driver','Intel Gigabit','Bus','5','Slot','0')
evalc('rtwbuild(''xpcEnetDemo1Tx'')');
tgTx = slrt('TargetPC1');
load(tgTx,'xpcEnetDemo1Tx');
if (mdlOpen)
 bdclose('xpcEnetDemo1Tx');
end

Open, Build, and Download the Rx Model to TargetPC2

Click here to open the Rx model: xpcEnetDemo1Rx. This model receives data sent by
xpcEnetDemo1Tx and unpacks the data for display in a target scope. Open the model.

mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp(systems, 'xpcEnetDemo1Rx'))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcEnetDemo1Rx'))
end

Build the model and download to the Rx target computer, TargetPC2.

• Configure for a non-Verbose build.
• Set Ethernet configuration to match target computer settings
• Build and download application.
• Close the model if we opened it.

set_param('xpcEnetDemo1Rx','RTWVerbose','off');
set_param('xpcEnetDemo1Rx/Real-time Ethernet Configuration','Driver','Intel Gigabit','Bus','8','Slot','10')
evalc('rtwbuild(''xpcEnetDemo1Rx'')');
tgRx = slrt('TargetPC2');
load(tgRx,'xpcEnetDemo1Rx');
if (mdlOpen)
 bdclose('xpcEnetDemo1Rx');
end

Run both Models

Using the Simulink Real-Time object variables tgTx and tgRx, start the models.

• Start the Tx model.
• Start the Rx model.

15 Simulink Real-Time Examples

15-176

• Let the models run for at least 5 sec.

start(tgTx);
start(tgRx);
pause(5);

Display the Tx Target Computer Scope

View the Tx target computer video display. It displays a plot of the signal data that is sent
to the Rx target computer via raw Ethernet. Use command:

tgTx.viewTargetScreen

Display the Rx Target Computer Scopes

View the Rx target computer video display. It displays a plot of the signal data that is
received from the Tx target computer via raw Ethernet. Use command:

tgRx.viewTargetScreen

Stop both Models

When done, stop the models from running.

• Stop the Tx model.
• Stop the Rx model.

stop(tgTx);
stop(tgRx);

 Real-Time Transmit and Receive over Ethernet

15-177

Filtering on MAC Address
Filtering Ethernet data using MAC addresses.

This example shows how to use blocks in the library xpcethernetlib to filter Ethernet
data based on the sender's MAC address. Signal data is sent by the transmitter model,
xpcEnetDemo2Tx, running on one target computer, TargetPC1, to the receiver model,
xpcEnetDemo2Rx, running on the second target computer, TargetPC2. The "Filter
Address" block is used to specify the source MAC addresses that will be accepted. In this
simple example, data packets containing one of three source MAC addresses will pass
through the Filter Address block in the receiver model:

1 MAC Address : 40:41:42:43:44:45
2 MAC Address : 20:21:22:23:24:25
3 MAC Address : 50:51:52:53:54:55

Note: Only packets with a MAC address 20:21:22:23:24:25 are actually transmitted,
received, and plotted.

Requirements

To run this example, you will need two target computers each with, each with an installed
and configured dedicated Ethernet card (in addition to the Ethernet card used for the
Ethernet link between the development and target computers). Refer to the Simulink®
Real-Time™ documentation on model-based Ethernet communications for details. Once
configured, set the PCI Bus and Slot in the "Real-Time Ethernet Configuration" block of
xpcEnetDemo2Tx and xpcEnetDemo2Rx to that of the Ethernet card installed in
TargetPC1 and TargetPC2 respectively.

Open, Build, and Download the Tx Model to TargetPC1

Click here to open the Tx model: xpcEnetDemo2Tx. This model drives an oscillator with a
square wave signal and sends the oscillator input and output signals to the Rx target
computer using raw Ethernet. Transmitted data packets have a specified MAC address of
20:21:22:23:24:25. Open the model.

mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp(systems, 'xpcEnetDemo2Tx'))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcEnetDemo2Tx'));
end

15 Simulink Real-Time Examples

15-178

Build the model and download to the Tx target computer, TargetPC1.

• Configure for a non-Verbose build.
• Set Ethernet configuration to match target computer settings.
• Build and download application.
• Close the model if we opened it.

set_param('xpcEnetDemo2Tx','RTWVerbose','off');
set_param('xpcEnetDemo2Tx/Real-time Ethernet Configuration','Driver','Intel Gigabit','Bus','5','Slot','0');
evalc('rtwbuild(''xpcEnetDemo2Tx'')');
tgTx = slrt('TargetPC1');
load(tgTx,'xpcEnetDemo2Tx');
if (mdlOpen)
 bdclose('xpcEnetDemo2Tx');
end

 Filtering on MAC Address

15-179

Open, Build, and Download the Rx Model to TargetPC2

Click here to open the Rx model: xpcEnetDemo2Rx. This model filters packets based on
specified MAC addresses and unpacks the received data for display in target scopes.
Open the model.

mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp(systems, 'xpcEnetDemo2Rx'))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcEnetDemo2Rx'));
end

Build the model and download to the Rx target computer, TargetPC2.

15 Simulink Real-Time Examples

15-180

• Configure for a non-Verbose build.
• Set Ethernet configuration to match target computer settings.
• Build and download application.
• Close the model if we opened it.

set_param('xpcEnetDemo2Rx','RTWVerbose','off');
set_param('xpcEnetDemo2Rx/Real-time Ethernet Configuration','Driver','Intel Gigabit','Bus','8','Slot','10');
evalc('rtwbuild(''xpcEnetDemo2Rx'')');
tgRx = slrt('TargetPC2');
load(tgRx,'xpcEnetDemo2Rx');
if (mdlOpen)
 bdclose('xpcEnetDemo2Rx');
end

Run both Models

Using the Simulink Real-Time object variables tgTx and tgRx, start the models.

• Start the Tx model.
• Start the Rx model.
• Let the models run for at least 5 sec.

start(tgTx);
start(tgRx);
pause(5);

Display the Tx Target Computer Scope

View the Tx target computer video display. It displays a plot of the signal data that's sent
to the Rx target computer via raw Ethernet. Use command:

tgTx.viewTargetScreen

Display the Rx Target Computer Scopes

View the Rx target computer video display. It displays a plot of the signal data received
from the Tx target computer via raw Ethernet. Note that data passes through only one of
the MAC address filters. Use command:

tgRx.viewTargetScreen

 Filtering on MAC Address

15-181

Stop both Models

When done, stop the models from running.

• Stop the Tx model.
• Stop the Rx model.

stop(tgTx);
stop(tgRx);

15 Simulink Real-Time Examples

15-182

Filtering on EtherType
Filtering Ethernet data using EtherType.

This example shows how to use blocks in the library xpcethernetlib to filter Ethernet
data based on the sender's EtherType. EtherType is a field in the Ethernet networking
standard and indicates which protocol is being transported in an Ethernet packet. Signal
data is sent by the transmitter model, xpcEnetDemo3Tx, running on one target computer,
TargetPC1, to the receiver model, xpcEnetDemo3Rx, running on the second target
computer, TargetPC2. The "Filter Type" block is used to specify the EtherTypes that will
be accepted. In this simple example, data packets containing one of three different
EtherTypes are allowed to pass through respective Filter Type blocks in the receiver
model. The accepted Ether Types are:

1 EtherType : 88CD (SERCOS-III)
2 EtherType : 88A4 (EtherCAT®)
3 EtherType : 0800 (IPv4)

Notes:

1 In this example, only packets with EtherTypes 88CD (SERCOS-III) and 88A4
(EtherCAT) are transmitted, received, and plotted.

2 Real SERCOS-III and EtherCAT packets are not being transmitted. Only the
EtherType field in the Ethernet packet is set to emulate these types.

Requirements

To run this example, you will need two target computers, each with an installed and
configured dedicated Ethernet card (in addition to the Ethernet card used for the
Ethernet link between the development and target computers). Refer to the Simulink®
Real-Time™ documentation on model-based Ethernet communications for details. Once
configured, set the PCI Bus and Slot in the "Real-Time Ethernet Configuration" block of
xpcEnetDemo3Tx and xpcEnetDemo3Rx to that of the Ethernet card installed in
TargetPC1 and TargetPC2 respectively.

Open, Build, and Download the Tx Model to TargetPC1

Click here to open the Tx model: xpcEnetDemo3Tx. This model drives an oscillator with a
square wave signal and sends the oscillator input and output signals to the Rx target
computer. The oscillator input (square wave) is transmitted as a SERCOS-III packet and
the oscillator output is transmitted as an EtherCAT packet. Open the model.

 Filtering on EtherType

15-183

mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp(systems, 'xpcEnetDemo3Tx'))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcEnetDemo3Tx'));
end

15 Simulink Real-Time Examples

15-184

Build the model and download to the Tx target computer, TargetPC1.

• Configure for a non-Verbose build.
• Set Ethernet configuration to match target computer settings.

 Filtering on EtherType

15-185

• Build and download application.
• Close the model if we opened it.

set_param('xpcEnetDemo3Tx','RTWVerbose','off');
set_param('xpcEnetDemo3Tx/Real-time Ethernet Configuration','Driver','Intel Gigabit','Bus','5','Slot','0');
evalc('rtwbuild(''xpcEnetDemo3Tx'')');
tgTx = slrt('TargetPC1');
load(tgTx,'xpcEnetDemo3Tx');
if (mdlOpen)
 bdclose('xpcEnetDemo3Tx');
end

Open, Build, and Download the Rx Model to TargetPC2

Click here to open the Rx model: xpcEnetDemo3Rx. This model filters packets based on
specified EtherType and unpacks the received data for display in target scopes. Open the
model.

mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp(systems, 'xpcEnetDemo3Rx'))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcEnetDemo3Rx'));
end

15 Simulink Real-Time Examples

15-186

Build the model and download to the Rx target computer, TargetPC2.

• Configure for a non-Verbose build.
• Set Ethernet configuration to match target computer settings.
• Build and download application.
• Close the model if we opened it.

set_param('xpcEnetDemo3Rx','RTWVerbose','off');
set_param('xpcEnetDemo3Rx/Real-time Ethernet Configuration','Driver','Intel Gigabit','Bus','8','Slot','10');
evalc('rtwbuild(''xpcEnetDemo3Rx'')');

 Filtering on EtherType

15-187

tgRx = slrt('TargetPC2');
load(tgRx,'xpcEnetDemo3Rx');
if (mdlOpen)
 bdclose('xpcEnetDemo3Rx');
end

Run both Models

Using the Simulink Real-Time object variables tgTx and tgRx, start the models.

• Start the Tx model.
• Start the Rx model.
• Let the models run for at least 5 sec.

start(tgTx);
start(tgRx);
pause(5);

Display the Tx Target Computer Scope

View the Tx target computer video display. It displays a plot of the signal data that is sent
to the Rx target computer via raw Ethernet. Use command:

tgTx.viewTargetScreen;

Display the Rx Target Computer Scopes

Voew the Rx target computer video display. It displays a plot of the signal data received
from the Tx target computer via raw Ethernet. Note that data with EtherTypes SERCOS-
III and EtherCAT pass through the filters. Use command:

tgRx.viewTargetScreen;

Stop both Models

When done, stop the models from running.

• Stop the Tx model.
• Stop the Rx model.

stop(tgTx);
stop(tgRx);

15 Simulink Real-Time Examples

15-188

Ethernet Rx Block Filtering
Filtering Ethernet data using the Ethernet Rx block.

This example shows how to use blocks in the library xpcethernetlib to filter Ethernet
data based on the packet's EtherType. EtherType is a field in the Ethernet networking
standard that designates which protocol is being transported in the Ethernet packet.
Packets of signal data are sent by the transmitter model, xpcEnetDemo4Tx, running on
one target computer, TargetPC1, to the receiver model, xpcEnetDemo4Rx, running on the
second target computer, TargetPC2. The "Ethernet Rx" block is used to specify the
EtherType filter criteria. In this simple example, two separate Ethernet Rx blocks are
used to receive and filter data packets. One Ethernet Rx block accepts SERCOS-III
packets (EtherType - 88CD), the second Ethernet Rx block accepts EtherCAT® packets
(EtherType - 88A4). Go to the Filter tab in the respective Ethernet Rx blocks to see
EtherType specification options.

Notes:

1 Real SERCOS-III and EtherCAT packets are not being transmitted. Only the
EtherType field in the Ethernet packet is set to emulate these types.

2 This model shows how to receive and process packets using multiple Ethernet Rx
blocks. Compare this example with xpcEnetDemo3 which uses one Ethernet Rx block
and then parses data packets with the Network Buffer Filter block. Use the method
shown in this example, xpcEnetDemo4, if you want more than one Ethernet Rx block
- perhaps each contained in separate subsystems.

Requirements

To run this example, you will need two target computers, each with an installed and
configured dedicated Ethernet card (in addition to the Ethernet card used for the
Ethernet link between the development and target computers). Refer to the Simulink®
Real-Time™ documentation on model-based Ethernet communications for details. Once
configured, set the PCI Bus and Slot in the "Real-time Ethernet Configuration" block of
xpcEnetDemo4Tx and xpcEnetDemo4Rx to that of the Ethernet card installed in
TargetPC1 and TargetPC2 respectively.

Open, Build, and Download the Tx Model to TargetPC1

Click here to open the Tx model: xpcEnetDemo4Tx. This model drives an oscillator with a
square wave signal and sends the oscillator input and output signals to the Rx target

 Ethernet Rx Block Filtering

15-189

computer. The oscillator input (square wave) is transmitted as a SERCOS-III packet and
the oscillator output is transmitted as an EtherCAT packet. Open the model.

mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp(systems, 'xpcEnetDemo4Tx'))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcEnetDemo4Tx'));
end

15 Simulink Real-Time Examples

15-190

Build the model and download to the Tx target computer, TargetPC1.

• Configure for a non-Verbose build.
• Set Ethernet configuration to match target computer settings.

 Ethernet Rx Block Filtering

15-191

• Build and download application.
• Close the model if we opened it.

set_param('xpcEnetDemo4Tx','RTWVerbose','off');
set_param('xpcEnetDemo4Tx/Real-time Ethernet Configuration','Driver','Intel Gigabit','Bus','5','Slot','0');
evalc('rtwbuild(''xpcEnetDemo4Tx'')');
tgTx = slrt('TargetPC1');
load(tgTx,'xpcEnetDemo4Tx');
if (mdlOpen)
 bdclose('xpcEnetDemo4Tx');
end

Open, Build, and Download the Rx Model to TargetPC2

Click here to open the Rx model: xpcEnetDemo4Rx. This model filters packets based on
EtherType and unpacks the received data for display in target scopes. Open the model.

mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp(systems, 'xpcEnetDemo4Rx'))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcEnetDemo4Rx'));
end

15 Simulink Real-Time Examples

15-192

SERCOS-III Receiver Subsystem

open_system('xpcEnetDemo4Rx/SERCOS-III Receiver');

 Ethernet Rx Block Filtering

15-193

EtherCAT Receiver Subsystem

open_system('xpcEnetDemo4Rx/EtherCAT Receiver');

Select the Ethertype(s) of interest on the Filter tab of the Ethernet Rx block. As example,
SERCOS-III packet are selected here:

15 Simulink Real-Time Examples

15-194

Build the model and download to the Rx target computer, TargetPC2.

Configure for a non-Verbose build. * Set Ethernet configuration to match target computer
settings. Build and download application. Close the model if we opened it.

set_param('xpcEnetDemo4Rx','RTWVerbose','off');
set_param('xpcEnetDemo4Rx/Real-time Ethernet Configuration','Driver','Intel Gigabit','Bus','8','Slot','10');
evalc('rtwbuild(''xpcEnetDemo4Rx'')');
tgRx = slrt('TargetPC2');
load(tgRx,'xpcEnetDemo4Rx');
if (mdlOpen)
 bdclose('xpcEnetDemo4Rx');
end

Run both Models

Using the Simulink Real-Time object variables tgTx and tgRx, start the models.

• Start the Tx model.
• Start the Rx model.
• Let the models run for at least 5 sec.

start(tgTx);
start(tgRx);
pause(5);

Display the Tx Target Computer Scope

View the Tx target computer video display. It displays a plot of the signal data that is sent
to the Rx target computer via raw Ethernet. Use command:

tgTx.viewTargetScreen;

Display the Rx Target Computer Scopes

View the Rx target computer video display. It displays a plot of the signal data received
from the Tx target computer via raw Ethernet. Note that only data with SERCOS-III and
EtherCAT EtherTypes are pass through the respective Ethernet Rx blocks. Use command:

tgRx.viewTargetScreen;

Stop both Models

When done, stop the models from running.

 Ethernet Rx Block Filtering

15-195

• Stop the Tx model.
• Stop the Rx model.

stop(tgTx);
stop(tgRx);

15 Simulink Real-Time Examples

15-196

Simple ASCII Encoding/Decoding Loopback Test (With
Baseboard Blocks)

This example model shows how a single floating point number can be converted to ASCII
and transmitted over a serial link. The sending serial port and receiving serial port can be
in the same system or in different systems.

To test this model:

1 The target computer must have two COM ports.
2 Connect COM1 to COM2 with a null modem cable.

This example is configured to use baseboard serial ports (COM1 and COM2). You can also
use COM3 and COM4 by changing the board setup in the Baseboard blocks. Other serial
blocks could be used in place of the Baseboard blocks. For instance, a single Quatech® 4-
port block could be used whereby you send on port 1 and receive on port 2.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcserialbaseboardsimpleascii'));

 Simple ASCII Encoding/Decoding Loopback Test (With Baseboard Blocks)

15-197

15 Simulink Real-Time Examples

15-198

ASCII Encoding/Decoding Loopback Test
This model shows how to send ASCII data over a serial link.

The ASCII Encode block generates a message with three different sub messages along
with some extraneous 'junk' to show how the FIFO Read HDRS block can remain
synchronized to the valid byte stream even in the presence of transmission errors.

The FIFO Read HDRS block can handle an arbitrary number of headers; just add them as
strings to the cell array in the block parameters dialog box. The messages must share the
same termination string. In this example, it is a carriage return followed by a line feed: "\r
\n".

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcserialasciitest'))
set_param('xpcserialasciitest','StopTime','30');
sim('xpcserialasciitest')

 ASCII Encoding/Decoding Loopback Test

15-199

15 Simulink Real-Time Examples

15-200

ASCII Encoding/Decoding Loopback Test (With
Baseboard Blocks)

This example model shows how to send ASCII data over a serial link.

The ASCII Encode block generates a message with three different sub messages along
with some extraneous 'junk' to show how the FIFO Read HDRS block can remain
synchronized to the valid byte stream even in the presence of transmission errors.

The FIFO Read HDRS block can handle an arbitrary number of headers; just add them as
strings to the cell array in the block parameters dialog box. The messages must share the
same termination string. In this example, it is a carriage return followed by a line feed: "\r
\n".

To test this model:

1 The target computer must have two COM ports.
2 Connect COM1 to COM2 with a null modem cable.

This example is configured to use baseboard serial ports (COM1 and COM2). You can also
use COM3 and COM4 by changing the board setup in the Baseboard blocks. Other serial
blocks could be used in place of the Baseboard blocks. For instance, a single Quatech® 4-
port block could be used whereby you send on port 1 and receive on port 2.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcserialbaseboardasciitest'))

 ASCII Encoding/Decoding Loopback Test (With Baseboard Blocks)

15-201

15 Simulink Real-Time Examples

15-202

ASCII Encoding/Decoding Resync Loopback Test
This example model shows the ability of the FIFO Read HDRS block to resynchronize
after being repeatedly disabled as well as the ability to resolve errors such as when a
message is only partially complete at the time the read is attempted.

The Switch block alternates between the first and last parts of the message on successive
sample times. This mimics a worst case scenario where the model updates before the
message construction is complete. As a result, sometimes only part of the message is
received. The second pulse generator alternately enables and disables the FIFO Read
HDRS block.

Scope 1 graphs the decoded sine wave data received at each time step. When the Pulse
Generator1 block outputs a 0, the count from the FIFO Read HDRS block is 0. When it
outputs a 1, the read catches up by throwing away extra data and returns the last
complete value found in the FIFO. Scope 2 indicates when new data is present.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcserialasciisplit'))
set_param('xpcserialasciisplit','StopTime','30');
sim('xpcserialasciisplit')

 ASCII Encoding/Decoding Resync Loopback Test

15-203

15 Simulink Real-Time Examples

15-204

ASCII Encoding/Decoding Resync Loopback Test (With
Baseboard Blocks)

This model shows the ability of the FIFO Read HDRS block to resynchronize after being
repeatedly disabled as well as the ability to resolve errors such as when a message is only
partially complete at the time the read is attempted.

The Switch block alternates between the first and last parts of the message on successive
sample times. This mimics a worst case scenario where the model updates before the
message construction is complete. As a result, sometimes only part of the message is
received. The second pulse generator alternately enables and disables the FIFO Read
HDRS block.

Scope 1 graphs the decoded sine wave data received at each time step. When the Pulse
Generator1 block outputs a 0, the count from the FIFO Read HDRS block is 0. When it
outputs a 1, the read catches up by throwing away extra data and returns the last
complete value found in the FIFO. Scope 2 indicates when new data is present.

To test this model:

1 The target computer must have two COM ports.
2 Connect COM1 to COM2 with a null modem cable.

This example is configured to use baseboard serial ports (COM1 and COM2). You can also
use COM3 and COM4 by changing the board setup in the Baseboard blocks. Other serial
blocks could be used in place of the Baseboard blocks. For instance, a single Quatech® 4-
port block could be used whereby you send on port 1 and receive on port 2.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcserialbaseboardasciisplit'));

 ASCII Encoding/Decoding Resync Loopback Test (With Baseboard Blocks)

15-205

15 Simulink Real-Time Examples

15-206

Binary Encoding/Decoding Loopback Test
This model shows how to send Binary data over a serial link.

The transmitted data are: [8,5,170,1,N,170,2,44,M]. This byte stream contains two
"messages" along with other elements as defined below.

• The first byte, 8, is a count of the remaining number of bytes in the stream.
• The second byte, 5, is an extraneous value (EV).
• [170,1,N] is message 1 (M1).
• [170,2,44,M] is message 2 (M2).
• N and M are numbers between 0 and 255 that are incrementing and decrementing,

respectively.

Even though the data stream includes extraneous bytes (5 in this case), the FIFO Read
BINARY block can handle and ignore this extra information. Scope 1 displays the received
message 1 data. Scope 2 displays the received message 2 data.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcserialbinarytest'));

 Binary Encoding/Decoding Loopback Test

15-207

15 Simulink Real-Time Examples

15-208

Binary Encoding/Decoding Loopback Test (With
Baseboard Blocks)

This model shows how to send Binary data over a serial link.

The transmitted data are: [8,5,170,1,N,170,2,44,M]. This byte stream contains two
"messages" along with other elements as defined below.

• The first byte, 8, is a count of the remaining number of bytes in the stream.
• The second byte, 5, is an extraneous value (EV).
• [170,1,N] is message 1 (M1).
• [170,2,44,M] is message 2 (M2).
• N and M are numbers between 0 and 255 that are incrementing and decrementing,

respectively.

Notice that when the data contains extraneous bytes (5 in this case) the FIFO Read
BINARY block can handle and ignore this extra information.

Scope 1 displays the received message 1 data. Scope 2 displays the received message 2
data. Scope 3 shows the transmitted byte stream. The gain block on the signal to Scope 3
makes the elements of the vector non-virtual so the scope can see them.

To test this model:

1 The target computer must have two COM ports.
2 Connect COM1 to COM2 with a null modem cable.

This example is configured to use baseboard serial ports (COM1 and COM2). You can also
use COM3 and COM4 by changing the board setup in the Baseboard blocks. Other serial
blocks could be used in place of the Baseboard blocks. For instance, a single Quatech® 4-
port block could be used whereby you send on port 1 and receive on port 2.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcserialbaseboardbinarytest'));

 Binary Encoding/Decoding Loopback Test (With Baseboard Blocks)

15-209

15 Simulink Real-Time Examples

15-210

Binary Encoding/Decoding Resync Loopback Test
This model shows the ability of the FIFO Read BINARY block to handle messages that are
interrupted and only partially complete. This is a 'worst case' example where every
message is interrupted.

The Segmented Message Constructor subsystem contains blocks that prepare and send
only parts of messages on each time step.

On the receive side, the FIFO read BINARY block is looking for two different two-
character headers. If it finds [170,1] it outputs [3,170,1,N] on port 1. If it finds
[170,2], it outputs [4,170,2,44,M] to port 2. N and M are numbers between 0 and
255 that are incremenenting and decrementing, respectively.

If a message header is not found in the FIFO on a given time step, then that port will
output 0. The outputs are padded to the maximum vector size specified in the FIFO Read
BINARY block. In this example output vectors are 6 in width. The count in the first
element tells how many elements are significant.

Scope 1 displays the received message 1 data. Scope 2 displays the received message 2
data.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcserialbinarysplit'));

 Binary Encoding/Decoding Resync Loopback Test

15-211

15 Simulink Real-Time Examples

15-212

Binary Encoding/Decoding Resync Loopback Test (With
Baseboard Blocks)

This model shows the ability of the FIFO Read BINARY block to handle messages that are
interrupted and only partially complete. This is a 'worst case' example where every
message is interrupted.

The Segmented Message Constructor subsystem contains blocks that prepare and send
only parts of messages on each time step.

On the receive side, the FIFO read BINARY block is looking for two different two-
character headers. If it finds [170,1] it outputs [3,170,1,N] on port 1. If it finds
[170,2], it outputs [4,170,2,44,M] to port 2. N and M are numbers between 0 and
255 that are incrementing and decrementing, respectively.

If a message header is not found in the FIFO on a given time step, then that port will
output 0. The outputs are padded to the maximum vector size specified in the FIFO Read
BINARY block. In this example output vectors are 1024 in width. The count in the first
element tells how many elements are significant. The Demux blocks discard the
uninteresting parts of the signal.

Scope 1 displays the received message 1 data. Scope 2 displays the received message 2
data.

To test this model:

1 The target computer must have two COM ports.
2 Connect COM1 to COM2 with a null modem cable.

This example is configured to use baseboard serial ports (COM1 and COM2). You can also
use COM3 and COM4 by changing the board setup in the Baseboard blocks. Other serial
blocks could be used in place of the Baseboard blocks. For instance, a single Quatech® 4-
port block could be used whereby you send on port 1 and receive on port 2.

open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcserialbaseboardbinarysplit'));

 Binary Encoding/Decoding Resync Loopback Test (With Baseboard Blocks)

15-213

15 Simulink Real-Time Examples

15-214

Read CPU Temperature on Simulink® Real-Time™
This example shows how to read CPU temperature in degrees Celsius (°C).

Requirements:

1 Boot the target computer with the Simulink Real-Time real-time kernel.
2 At the MATLAB® command prompt, type dslrtCPUTemperatureDemo to download

and run the model on the target computer.

Select and Open the Model

mdl='dslrtCPUTemperature';
open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos',mdl));

Build, Download, and Run the Model

slrtpingtarget;
set_param(mdl,'RTWVerbose','off');
rtwbuild(mdl);
tg = slrt('TargetPC1');
load(tg,mdl);
start(tg);
pause(20);
stop(tg);

Starting Simulink Real-Time build procedure for model: dslrtCPUTemperature
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change

 Read CPU Temperature on Simulink® Real-Time™

15-215

the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: dslrtCPUTemperature
Created MLDATX ..\dslrtCPUTemperature.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

Close the Model

close_system(mdl,0);

15 Simulink Real-Time Examples

15-216

Target to Target communication using TCP
This example shows how to use TCP blocks to send data between two target computers.
This example also describes the effects of a server and a client running at different
sample times.

The server model TargetToTargetTCPServer runs on TargetPC1 with sample time .02
second. This model contains a sine wave source. The client model
TargetToTargetTCPClient runs on TargetPC2 with sample time .01 second. This
model contains a sawtooth wave source. Both models send and receive signal data
packets.

Click here to open this example: TargetToTargetTCP.

Open, build, and download the server model

Click here to open model 1: TargetToTargetTCPServer.

Open the model.

mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp('TargetToTargetTCPServer', systems))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','TargetToTargetTCPServer'));
end

 Target to Target communication using TCP

15-217

Build the model and download to the target computer.

• Configure server TCP settings.
• Build and download application.

set_param('TargetToTargetTCPServer/TCP Server Configure','PCIBus','5');
set_param('TargetToTargetTCPServer/TCP Server Configure','PCISlot','0');
set_param('TargetToTargetTCPServer/TCP Server Configure','PCIFunction','0');
rtwbuild('TargetToTargetTCPServer');
tg1 = slrt('TargetPC1');
load(tg1,'TargetToTargetTCPServer');

Starting Simulink Real-Time build procedure for model: TargetToTargetTCPServer
Generated code for 'TargetToTargetTCPServer' is up to date because no structural, parameter or code replacement library changes were found.
Successful completion of build procedure for model: TargetToTargetTCPServer
Created MLDATX ..\TargetToTargetTCPServer.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

• Close the model.

15 Simulink Real-Time Examples

15-218

if (mdlOpen)
 bdclose('TargetToTargetTCPServer');
end

Open, build, and download the client model

Click here to open model 2: TargetToTargetTCPClient.

Open the model.

mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp('TargetToTargetTCPClient', systems))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','TargetToTargetTCPClient'));
end

Build the model and download to the target computer.

• Configure client TCP settings.
• Build and download application.

set_param('TargetToTargetTCPClient/TCP Client Configure','PCIBus','8');
set_param('TargetToTargetTCPClient/TCP Client Configure','PCISlot','10');

 Target to Target communication using TCP

15-219

set_param('TargetToTargetTCPClient/TCP Client Configure','PCIFunction','0');
rtwbuild('TargetToTargetTCPClient');
tg2 = slrt('TargetPC2');
load(tg2,'TargetToTargetTCPClient');

Starting Simulink Real-Time build procedure for model: TargetToTargetTCPClient
Generated code for 'TargetToTargetTCPClient' is up to date because no structural, parameter or code replacement library changes were found.
Successful completion of build procedure for model: TargetToTargetTCPClient
Created MLDATX ..\TargetToTargetTCPClient.mldatx
Looking for target: TargetPC2
Download model onto target: TargetPC2

• Close the model.

if (mdlOpen)
 bdclose('TargetToTargetTCPClient');
end

Run both models

Using the Simulink Real-Time object variables tg1 and tg2, start the models.

• Start the TargetPC1 model.
• Start the TargetPC2 model.

start(tg1);
start(tg2);
pause(4);

Stop both models

Using the Simulink Real-Time object variables tg1 and tg2, stop the models.

• Stop the TargetPC1 model.
• Stop the TargetPC2 model.

stop(tg1);
stop(tg2);

Generate Server (TargetPC1) Plot

tg1.viewTargetScreen();

15 Simulink Real-Time Examples

15-220

• Scope 1 is the 'Status' output of the 'TCP Server Configure' block. The value goes to 1
when a connection is established.

• Scope 2 is the 'Status' output of the 'TCP Send' block. After the connection is
established the value goes to 16 to indicate that 16 bytes are sent every sample time.

• Scope 3 is the 'Length' output of the 'TCP Receive' block in the server model. The
value in the scope goes from 0 to 16 and then stays at 32. This is due to the fact that

 Target to Target communication using TCP

15-221

the server is running half as fast as the client. As a result for every sample time on the
server, the client sends it 2 packets of 16 bytes each. At every sample time, the server
blocks have 32 bytes available to read. In this model on 16 bytes are read out so the
other 16 bytes are missed out by the model. This will not be a TCP error as the packets
are effectively transmitted and received - but the model is configured in a way that
causes the packets to be missed.

• Scope 4 plots the received data.

Generate Client (TargetPC2) Plot

tg2.viewTargetScreen();

15 Simulink Real-Time Examples

15-222

• Scope 1 is the 'Status' output of the 'TCP Client Configure' block. The value goes to 1
when a connection is established.

• Scope 2 is the 'Status' output of the 'TCP Send' block. After the connection is
established the value goes to 16 to indicate that 16 bytes are sent every sample time.

 Target to Target communication using TCP

15-223

• Scope 3 is the 'Length' output of the 'TCP Receive' block in the client model. This
switches between 0 and 16 since the client runs twice as fast as the server, so for
every alternate sample it receives no data.

• Scope 4 plots the received data.

Effect of the difference in sample times

The following plot compares the sine wave sent by the server and received by the client.

Server sine wave

tx = tg1.TimeLog;
x = tg1.OutputLog;

Client sine wave (received)

ty = tg2.TimeLog;
y = tg2.OutputLog;

Plot a short section

NOTE: This portion only works when you have a second target machine that supports
TCP.

plot(tx(10:30), x(10:30), 'b--o', ty(10:60), y(10:60), 'g--o');
legend({'Server (SampleTime: .02)','Client (SampleTime: .01)'})
xlabel('Time (seconds)')
ylabel('Amplitude')
title('Compare Tx and Rx sine waveform')

• The client runs twice as fast as the server, so there are double the number of green
points for the same time duration.

• Since the points in between have no new data sent, the previous value is held.
• The delay between the sine waves depends on various factors like the lack of

synchronization between the targets and network caused delays.

15 Simulink Real-Time Examples

15-224

Target to Host Transmission using UDP
This example shows how to use UDP blocks to send data from a target computer to a
development computer. Signal data are sent by the transmit model running on the target
computer, TargetToHostUDPTx, to the receiver model running in Simulink® on the
development computer, TargetToHostUDPRx.

Note: When considering UDP as a protocol for communicating data to or from the
Simulink Real-Time™ environment it is important to be aware of the following:

• The Simulink model on the development computer is running as fast as it can and is
therefore not synchronized to a real-time clock.

• UDP is a connectionless protocol that does not check to confirm that packets were
transmitted. Data packets can be lost or dropped.

• On the target computer, UDP blocks run in a background task that executes each time
step after the real-time task completes. If the block cannot run or complete the
background task before the next time step, data may not be communicated.

• UDP data packets are transmitted over the Ethernet link between the development
and target computers and must therefore share bandwidth with the Ethernet link.

• For more information on using UDP with Simulink Real-Time, see the documentation
on UDP I/O support.

Click here to open this example: TargetToHostUDP.

Open, Build, and Download the Target Computer Model

Click here to open the Tx model: TargetToHostUDPTx. This model drives a first order
transfer function with a square wave signal and sends the transfer function input and
output signals to the development computer using UDP.

Open the model.

mdlOpened = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp('TargetToHostUDPTx', systems))
 mdlOpened = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','TargetToHostUDPTx'));
end

 Target to Host Transmission using UDP

15-225

Build the model and download to the target computer.

• Configure for a non-Verbose build.
• Configure UDP Send block for development computer address.
• Mark the Signal Generator and Transfer Function output for data logging.
• Build and download application.
• Open the Simulation Data Inspector.

This code shows how to mark signals programmatically for data logging. You can also
mark signals for data logging in the Simulink Editor. You can view the logged data in in
the Simulation Data Inspector.

set_param('TargetToHostUDPTx','RTWVerbose','off');
set_param('TargetToHostUDPTx/Send','toAddress','10.10.10.128');
hSigGen = get_param('TargetToHostUDPTx/Signal Generator','PortHandles');
SigGen = hSigGen.Outport(1);
Simulink.sdi.markSignalForStreaming(SigGen,'on');
hTranFun = get_param('TargetToHostUDPTx/Transfer Function','PortHandles');
TranFun = hTranFun.Outport(1);
Simulink.sdi.markSignalForStreaming(TranFun,'on');
rtwbuild('TargetToHostUDPTx');

15 Simulink Real-Time Examples

15-226

tg = slrt('TargetPC1');
load(tg,'TargetToHostUDPTx');
Simulink.sdi.view;

Starting Simulink Real-Time build procedure for model: TargetToHostUDPTx
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: TargetToHostUDPTx
Created MLDATX ..\TargetToHostUDPTx.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

Close the model if we opened it.

if (mdlOpened)
 bdclose('TargetToHostUDPTx');
end

Open the development computer Model

Click here to open the Rx model: TargetToHostUDPRx. This model receives data sent by
TargetToHostUDPTx.

mdlOpened = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp('TargetToHostUDPRx', systems))
 mdlOpened = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','TargetToHostUDPRx'));
end

 Target to Host Transmission using UDP

15-227

Before running this model:

• Configure UDP Send block for target computer address.
• Mark the Receive block Data and Length outputs for data logging.

set_param('TargetToHostUDPRx/Receive','fmAddress','10.10.10.15');
hUdpReceiveData = get_param('TargetToHostUDPRx/Receive','PortHandles');
UdpReceiveData = hUdpReceiveData.Outport(1);
Simulink.sdi.markSignalForStreaming(UdpReceiveData,'on');
hUdpReceiveLength = get_param('TargetToHostUDPRx/Receive','PortHandles');
UdpReceiveLength = hUdpReceiveLength.Outport(2);
Simulink.sdi.markSignalForStreaming(UdpReceiveLength,'on');

Run Both Models

Start model on target computer followed by model on development computer.

• Start the target computer Tx model.
• Wait for 1 sec.
• Start the development computer Rx model.
• Wait for 5 sec.
• Wait another 1 sec.
• Open the Simulation Data Inspector

15 Simulink Real-Time Examples

15-228

start(tg);
pause(1);
set_param(bdroot,'SimulationCommand','start');
pause(5);
while ~strcmpi(get_param(bdroot,'SimulationStatus'),'stopped')
 pause(1);
end
Simulink.sdi.view;
stop(tg);

Compare Signals in the Simulation Data Inspector

The signal that the development computer receives Receive:2 does not look exactly like
the signal that the target computer sent Transfer Function:1. On the development
computer, the model does not run in real-time. The model on the development computer
actually runs faster than real-time. Additionally, it does not run at constant intervals, and
the number of steps processed per second varies depending on computer load. Therefore,
the Data output values are sometimes held from the previous packet that the block
received by the development computer model. You can use the second output Receive:2
of the UDP Receive Binary block to detect the presence of a new packet. The development
computer plot shows that whenever there is a new packet, the second output Receive:2
goes to a non-zero value indicating the number of bytes received. When it is 0, the Data
output remains the value from the previous packet that the block received.

 Target to Host Transmission using UDP

15-229

15 Simulink Real-Time Examples

15-230

Target to Target Transmission using UDP
This example shows how to use UDP blocks to send data between two target computers.
The model TargetToTargetRealtimeUDP1 runs on TargetPC1. The model
TargetToTargetRealtimeUDP2 runs on TargetPC2. Both models send and receive
signal data packets.

Note: When considering UDP as a protocol for communicating data to/from the
Simulink® Real-Time™ environment, it is important to be aware of the following:

• UDP is a connectionless protocol that does not check to confirm that packets were
transmitted or received. Data packets can be lost or dropped.

• For more information on using UDP with Simulink Real-Time, see the documentation
on UDP I/O support.

Click here to open this example: TargetToTargetUDP.

Open, Build, and Download the TargetPC1 Model

Click here to open model 1: TargetToTargetRealtimeUDP1.

Open the model.

mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp('TargetToTargetRealtimeUDP1', systems))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','TargetToTargetRealtimeUDP1'));
end

 Target to Target Transmission using UDP

15-231

Build the model and download to the target computer.

• Configure for a non-Verbose build.
• Configure UDP parameters for TargetPC1.
• Build and download application.

set_param('TargetToTargetRealtimeUDP1','RTWVerbose','off');
set_param('TargetToTargetRealtimeUDP1/UDP Configure','PCIBus','5')
set_param('TargetToTargetRealtimeUDP1/UDP Configure','PCISlot','0')
set_param('TargetToTargetRealtimeUDP1/UDP Configure','PCIFunction','0')
rtwbuild('TargetToTargetRealtimeUDP1');
tg = slrt('TargetPC1');
load(tg,'TargetToTargetRealtimeUDP1');

15 Simulink Real-Time Examples

15-232

Starting Simulink Real-Time build procedure for model: TargetToTargetRealtimeUDP1
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: TargetToTargetRealtimeUDP1
Created MLDATX ..\TargetToTargetRealtimeUDP1.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

Close the model if we opened it.

if (mdlOpen)
 bdclose('TargetToTargetRealtimeUDP1');
end

Open, Build, and Download the TargetPC2 Model

Click here to open model 2: TargetToTargetRealtimeUDP2.

Open the model.

mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp('TargetToTargetRealtimeUDP2', systems))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','TargetToTargetRealtimeUDP2'));
end

 Target to Target Transmission using UDP

15-233

Build the model and download to the target computer.

• Configure for a non-Verbose build.
• Configure UDP parameters for TargetPC2.
• Build and download application.

set_param('TargetToTargetRealtimeUDP2','RTWVerbose','off');
set_param('TargetToTargetRealtimeUDP2/UDP Configure','PCIBus','8')
set_param('TargetToTargetRealtimeUDP2/UDP Configure','PCISlot','10')
set_param('TargetToTargetRealtimeUDP2/UDP Configure','PCIFunction','0')
rtwbuild('TargetToTargetRealtimeUDP2');

15 Simulink Real-Time Examples

15-234

tg2 = slrt('TargetPC2');
load(tg2,'TargetToTargetRealtimeUDP2');

Starting Simulink Real-Time build procedure for model: TargetToTargetRealtimeUDP2
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: TargetToTargetRealtimeUDP2
Created MLDATX ..\TargetToTargetRealtimeUDP2.mldatx
Looking for target: TargetPC2
Download model onto target: TargetPC2

Close the model if we opened it.

if (mdlOpen)
 bdclose('TargetToTargetRealtimeUDP2');
end

Run both Models

Using the Simulink Real-Time object variables tg1 and tg2, start the models.

• Start the TargetPC1 model. Simulink object is tg.
• Start the TargetPC2 model. Simulink object is tg2.
• Run for 5 seconds.

start(tg);
start(tg2);
pause(5);

Stop both Models

Using the Simulink Real-Time object variables tg1 and tg2, stop the models.

• Stop the TargetPC1 model. Simulink object is tg.
• Stop the TargetPC2 model. Simulink object is tg2.

stop(tg);
stop(tg2);

Generate TargetPC1 Plot

tg.viewTargetScreen();

 Target to Target Transmission using UDP

15-235

Generate TargetPC2 Plot

tg2.viewTargetScreen();

15 Simulink Real-Time Examples

15-236

 Target to Target Transmission using UDP

15-237

Apply Simulink Real-Time Model Template to Create
Real-Time Application

This example shows how to use the Simulink Real-Time template to create a Simulink
model. Starting from the model template for Simulink Real-Time provides a new model
that has configuration parameters set up for building a real-time application.

To see the Simulink Real-Time commands for each operation in this example, view the
example code.

Create a Simulink Model from Template

To create this model from the Simulink start page, in the MATLAB Command Window,
type:

simulink

Select the Simulink Real-Time template from the start page and create the
exampleSlrtApp model. Or, in the Command Window, use the
Simulink.createFromTemplate command.

Add Blocks, Connections, and Data Logging to the Model

The Simulink Real-Time model template contains a Gain block that connects an inport to
an outport. To make this model produce more interesting data to view on a target scope
and to view with the Simulation Data Inspector (SDI), add these blocks and connections.
You can use the UI for these steps or use the script commands shown:

• Add a signal generator by using the add_block command. Use the set_param
command to set its Amplitude parameter value to 4 and set its Frequency parameter
value to 400.

15 Simulink Real-Time Examples

15-238

• Add a target scope by using the add_block command.
• Remove the connections between the Gain block, inport, and outport by using the

delete_line command.
• Connect the signal generator to the gain block input by using the add_line

command.
• Connect the gain block output to the target scope by using the add_line command.
• Mark the Gain block output for data logging by using the set_param command.

Build the Real-Time Application and View Logged Data

You are ready to build the real-time application, run it on the target computer, and view
the logged data with these steps:

• Make sure that the development computer has a connection to the target computer.
• Build the model and download the real-time application to the target computer. On the

Real-Time tab, click Run on Target. Or, use the rtwbuild command and the load
command.

• Run the real-time application and log data by using the start command.
• Open the Simulation Data Inspector by double-clicking the Simulation Data Inspector

icon on the Gain block output signal or by using the Simulink.sdi.view command.

More Information

• “Create and Run Real-Time Application from Simulink Model”
• “Configure and Control a Real-Time Application”

 Apply Simulink Real-Time Model Template to Create Real-Time Application

15-239

• Simulation Data Inspector

15 Simulink Real-Time Examples

15-240

Data Logging With Simulation Data Inspector (SDI)
This example shows how to use Simulink® Real-Time™ with an SDI log of signal data.
Signals are logged during model execution. At the end of the run, the SDI interface
displays the signal. This example show how to get the signals from SDI interface by using
the command line.

Open, Build, and Download the Model

Open the model xpcFileLogging. This model generates 20 sinusoids, each having a
different amplitude.

Note: Scopes of type 'target' are limited to 10 signals.

Open the model.

mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if all(~strcmp('xpcosc', systems))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcFileLogging'));
end

 Data Logging With Simulation Data Inspector (SDI)

15-241

Build the model and download to the target computer

• Configure for a non-Verbose build.
• Build and download application.

set_param('xpcFileLogging','RTWVerbose','off');
rtwbuild('xpcFileLogging');

Starting Simulink Real-Time build procedure for model: xpcFileLogging
Warning: This model contains blocks that do not handle sample time
changes at runtime. To avoid incorrect results, only change
the sample time in the original model, then rebuild the model.
Successful completion of build procedure for model: xpcFileLogging
Created MLDATX ..\xpcFileLogging.mldatx
Looking for target: TargetPC1
Download model onto target: TargetPC1

15 Simulink Real-Time Examples

15-242

• Close the model if we opened it.

if (mdlOpen)
 bdclose('xpcFileLogging');
end

Run the Model

Using the Simulink Real-Time object variable, tg, start the model.

tg = slrt('TargetPC1');
load(tg,'xpcFileLogging');
start(tg);
pause(5);

Capture the target computer screen which displays the sinusoids in two target scopes.

tg.viewTargetScreen();

 Data Logging With Simulation Data Inspector (SDI)

15-243

Wait until the run is complete.

while strcmp(tg.Status, 'running')
 pause(0.05);
end

15 Simulink Real-Time Examples

15-244

Display the signals in the Simulation Data Inspector

To view the plotted signal data, open the Simulation Data Inspector.

Simulink.sdi.view

Retrieve and plot signal data from the Simulation Data Inspector

You can also retrieve the signal data from the SDI and plot the data by using these
commands.

• Get all the runs
• Get the run information

 Data Logging With Simulation Data Inspector (SDI)

15-245

runIds = Simulink.sdi.getAllRunIDs();
run = Simulink.sdi.getRun(runIds(end));
signals=run.SignalCount;
array=1;

• Get the signal.
• Get the signal objects.
• Take only Sine values.

for signalIndex=1:signals
 signalID = run.getSignalIDByIndex(signalIndex);
 signalObj = Simulink.sdi.getSignal(signalID);
 if(~isempty(strfind(signalObj.Name,'Sine')))
 signalArray(:,array)=signalObj.Values(:,1).Data;
 timeValues=signalObj.Values(:,1).Time;
 array=array+1;
 end
end

• Plot the signals.

plot(timeValues,signalArray);
grid on;
xlabel('Time (sec)'); ylabel('Amplitude');

More Information

• “Generate a Simulation Data Inspector Report Programmatically” (Simulink)

15 Simulink Real-Time Examples

15-246

Basic J1939 Communication over CAN
This example shows you how to use J1939 blocks to directly send and receive Parameter
Group (PG) messages in Simulink®.

Vehicle Network Toolbox™ provides J1939 Simulink blocks for receiving and transmitting
Parameter Groups via Simulink models over Controller Area Networks (CAN). This
example performs data transfer over a CAN bus using the J1939 Network Configuration,
J1939 Node Configuration, J1939 CAN Transport Layer, J1939 Receive and J1939
Transmit blocks. It also uses MathWorks Virtual CAN channels connected in a loopback
configuration.

Set Up J1939 Block Parameters

Create a model to set up J1939 receive and transmit over the network. The model is
configured to perform single frame transmission between two nodes defined in the J1939
database file.

 Basic J1939 Communication over CAN

15-247

• Use a J1939 Network Configuration block and select the CAN Database, J1939.dbc.
This J1939 database file consists of two nodes and a couple of single-frame and
multiframe messages.

• Use a J1939 CAN Transport Layer block and set the Device to MathWorks Virtual
Channel 1. The transport layer is configured to transfer J1939 messages over CAN via
the specified virtual channel.

• Use basic Simulink source blocks to connect to a J1939 Transmit block. The J1939
Transmit block is set to queue data for transmit at each timestep when the Trigger
port is enabled. For this example, a periodic trigger subsystem sends a high pulse
every 50 milliseconds.

• Use the J1939 Receive block to receive the messages transmitted over the network.

Visualize Signals Received on the Network

Plot the results to see the vehicle signal values received over the network. The X-axis
corresponds to the simulation timestep.

15 Simulink Real-Time Examples

15-248

Troubleshooting

249

Troubleshooting Basics

For questions or issues about your installation of the Simulink Real-Time product, refer to
these guidelines and tips. For more specific troubleshooting solutions, go to the
MathWorks® Support website:

www.mathworks.com/support/search_results.html?q=product:"Simulink
+Real-Time"

16

https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"

Troubleshoot with Confidence Test
A Simulink Real-Time installation can sometimes fail. Causes include development and
target computer failures, changes in underlying system software, I/O module failures, and
procedural errors. To address these issues, follow this process:

1 Run the confidence test. For more information, see “Run Confidence Test on
Configuration”.

Run the confidence test as the first step in troubleshooting, and in validating your
initial product installation and configuration.

2 If one or more tests fail, see the following information about the specific test:

• “Test 1: Ping Target Computer with System Ping” on page 17-2
• “Test 2: Ping Target Computer with slrtpingtarget” on page 17-4
• “Test 3: Software Restart Target Computer” on page 17-5
• “Test 4: Build and Download slrttestmdl” on page 17-7
• “Test 5: Check Communication with Target Computer” on page 17-9
• “Test 6: Download Prebuilt Real-Time Application” on page 17-10
• “Test 7: Execute Real-Time Application” on page 17-11
• “Test 8: Upload Logged Data and Compare Results” on page 17-12

3 Investigate the categorized troubleshooting sections for clues to the root cause of the
issue.

• To get information about the PCI boards in the target computer, call getPCIInfo.
• To read the target computer console log, call

SimulinkRealTime.utils.getConsoleLog.
4 If the tests run, but task execution time is slow or the CPU becomes overloaded, see

Real-Time Application Performance in “Troubleshooting in Simulink Real-
Time”.

5 For more information, refer to the following sources:

• MathWorks Tech Support: www.mathworks.com/support/
search_results.html?q=product:"Simulink+Real-Time"

• MATLAB Answers: www.mathworks.com/matlabcentral/answers/?
term=Simulink+Real-Time

16 Troubleshooting Basics

16-2

https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time

• MATLAB Central: www.mathworks.com/matlabcentral

For Speedgoat hardware issues, contact Speedgoat Tech Support:
www.speedgoat.com/support.

6 If these sources do not solve your issue, contact MathWorks Technical Support. See
“Find Simulink Real-Time Support” on page 26-2.

 Troubleshoot with Confidence Test

16-3

https://www.mathworks.com/matlabcentral/
https://www.speedgoat.com/support

Confidence Test Failures

For questions or issues that you have while using the Simulink Real-Time product, see
these guidelines and tips. For specific troubleshooting solutions, refer to the MathWorks
Support website:

www.mathworks.com/support/search_results.html?q=product:"Simulink
+Real-Time".

• “Test 1: Ping Target Computer with System Ping” on page 17-2
• “Test 2: Ping Target Computer with slrtpingtarget” on page 17-4
• “Test 3: Software Restart Target Computer” on page 17-5
• “Test 4: Build and Download slrttestmdl” on page 17-7
• “Test 5: Check Communication with Target Computer” on page 17-9
• “Test 6: Download Prebuilt Real-Time Application” on page 17-10
• “Test 7: Execute Real-Time Application” on page 17-11
• “Test 8: Upload Logged Data and Compare Results” on page 17-12

17

https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"

Test 1: Ping Target Computer with System Ping
If you are using a network connection, this test is a standard system ping to your target
computer.

1 At a Windows command prompt, type the IP address of the target computer:

ping xxx.xxx.xxx.xxx

Review the messages.

If the window displays a message similar to this message, system ping succeeds
even though test 1 fails.

Pinging xxx.xxx.xxx.xxx with 32 bytes of data:
Reply from xxx.xxx.xxx.xxx: bytes-32 time<10 ms TTL=59

If the window displays this message, the system ping command failed.

Pinging xxx.xxx.xxx.xxx with 32 byte of data:
Request timed out.

2 Ping succeeds — Ethernet addresses OK?

If ping succeeds, determine whether you entered the required IP and gateway
addresses in Simulink Real-Time Explorer:

a In the MATLAB Command Window, type slrtexplr.
b In the Targets pane, expand the target computer node.
c On the toolbar, click the Target Properties button .
d Select Host-to-Target communication.
e Check that the IP address, Subnet mask, and Gateway text boxes contain the

required values.
f Select Boot configuration.
g Click Create boot disk.
h Restart the target computer with the new kernel.

3 Ping fails — Cables OK?

If ping fails, look for a faulty network cable or, if you are using a coaxial cable, a
missing terminator.

17 Confidence Test Failures

17-2

4 Ping fails — Simulink Real-Time properties OK?

Check that you entered the required properties in Simulink Real-Time Explorer:

a In the MATLAB Command Window, type slrtexplr.
b In the Targets pane, expand the target computer node.
c On the toolbar, click the Target Properties button .
d Select Host-to-Target communication.
e Check that the IP address, Subnet mask, and Gateway text boxes contain the

required values.
f Check that Bus type is set to PCI or USB, depending on the Ethernet adapter

that you are using.
g Select Boot configuration.
h Click Create boot disk.
i Restart the target computer with the new kernel.

5 Ping fails — Ethernet interface operating?

Check that your Ethernet protocol interface is operating. For example, when the
cable is connected to the Ethernet card, make sure that the green “ready” light goes
on.

6 Ping fails — Interference from firewall or antivirus software?

Check that the development computer is not running a firewall or antivirus software
sensitive to the Ethernet port that you are using. For more information, consult your
IT department.

7 Ping fails — Not a locally mounted folder?

Run slrttest from a locally mounted folder, such as Z:\work, rather than from a
UNC network folder, such as \\Server\user\work.

If this procedure does not solve your issue, continue with the tests in “Troubleshoot with
Confidence Test” on page 16-2. If you still cannot solve your issue, see “Find Simulink
Real-Time Support” on page 26-2.

 Test 1: Ping Target Computer with System Ping

17-3

Test 2: Ping Target Computer with slrtpingtarget
This test is a Simulink Real-Time ping to your target computer.

1 In the MATLAB Command Window, type:

tg = SimulinkRealTime.target('argument-list')

argument-list is the connection information that indicates which target computer
you are working with. If you do not specify arguments, the software assumes that you
are communicating with the default target computer.

Review the messages in the Command Window.

If the communication link is functioning, you see a message that looks like this
message:

Target: TargetPC1
 Connected = Yes
 Application = loader

2 Not connected — Bad target boot kernel?

If you do not get the preceding message, it is possible that you have a bad target boot
kernel. Recreate the target boot kernel and restart the target computer with the new
kernel. See “Target Computer Boot Methods”.

3 Not connected — Target settings?

Use Simulink Real-Time Explorer to check the target settings. In particular, if test 1
passes but test 2 fails, check the IP address that you entered in the target settings.

If this procedure does not solve your issue, continue with the tests in “Troubleshoot with
Confidence Test” on page 16-2. If you still cannot solve your issue, see “Find Simulink
Real-Time Support” on page 26-2.

17 Confidence Test Failures

17-4

Test 3: Software Restart Target Computer
This test is a Simulink Real-Time command that attempts to restart your target computer.
This error is not necessarily fatal because some otherwise functional target computers do
not support software restart.

You must have already configured the target settings with Simulink Real-Time Explorer.
See “PCI Bus Ethernet Setup”.

Note Do not modify the files installed with the Simulink Real-Time software. If you want
to modify one of these files for your own purposes, copy the file and modify the copy.

1 In the MATLAB Command Window, type:

slrttest('-noreboot')

This command reruns the test without using the reboot command, and then displays
the message:

Test 3, Software reboot the target computer: ... SKIPPED
2 Build Succeeded — Software restart supported?

Review the results of Test 4, Build and download a Simulink Real-Time
application using model slrttestmdl performed without a software restart.
If slrttest builds and loads the real-time application without producing an error
message, it is possible that the target computer does not support the reboot
command. In this case, restart by using a physical reset button.

3 Build Failed — Example model modified?

To determine the cause of failure, in the Diagnostics Viewer and in the Command
Window, review the error messages. You can also open slrttestmdl and build and
download it manually.

If you directly or indirectly modify the slrttestmdl example model supplied with
the product, test 3 is likely to fail. Restore the slrttestmdl example model to its
original state by one of the following methods:

• Recreate the original model by editing it in the following location:

matlabroot\toolbox\rtw\targets\xpc\xpcdemos

 Test 3: Software Restart Target Computer

17-5

• Reinstall the software.

If this procedure does not solve your issue, continue with the tests in “Troubleshoot with
Confidence Test” on page 16-2. If you still cannot solve your issue, see “Find Simulink
Real-Time Support” on page 26-2.

17 Confidence Test Failures

17-6

Test 4: Build and Download slrttestmdl
This test attempts to build and download the model slrttestmdl.

1 To determine the cause of failure, in the Diagnostics Viewer and in the Command
Window, review the error messages. You can also open slrttestmdl and build and
download it manually.

2 Build Failed — Compiler not supported?

Using slrtgetCC, check that you are using a supported compiler. Check that you
can compile the blocks in the model with the given compiler and compiler version.

If you did not explicitly specify a compiler by using slrtsetCC, the build procedure
uses the compiler that you specified by using mex -setup. If the MEX compiler is
not a supported Microsoft Visual C++ compiler, the build procedure halts with an
error.

3 Build Failed — Compiler path?

After installation, the Microsoft Visual C++ compiler components must be in the
Microsoft Visual Studio folder. If you do not install the compiler at the required
location, you can get one of the following errors:

Error executing build command: Error using ==> make_rtw
Error using ==> rtw_c (SetupForVisual)
Invalid DEVSTUDIO path specified

or

Error executing build command: Error using ==> make_rtw
Error using ==> rtw_c
Errors encountered while building model "slrttestmdl"

along with this error:

NMAKE: fatal error U1064: MAKEFILE not found and no target
specified
Stop.

Check your compiler setup:

a In the Command Window, type:

slrtsetCC('setup')

 Test 4: Build and Download slrttestmdl

17-7

This function queries the development computer for C compilers that Simulink
Real-Time supports. It returns output like the following:
Select your compiler for Simulink Real-Time.

[1] Microsoft Visual C++ Compilers 2010 Professional in
 C:\Program Files (x86)\Microsoft Visual Studio 10.0
[2] Microsoft Visual C++ Compilers 2013 Team Explorer
 Language Pack in C:\Program Files (x86)\Microsoft Visual Studio 12.0

[0] None

Compiler:

b At the Compiler prompt, enter the number for the compiler that you want to
use. For example, 1.

The function verifies your selection:

Verify your selection:

Compiler: Microsoft Visual C++ Compilers 2010 Professional
Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

Are these correct [y]/n?
c Type y or press Enter.

If this procedure does not solve your issue, continue with the tests in “Troubleshoot with
Confidence Test” on page 16-2. If you still cannot solve your issue, see “Find Simulink
Real-Time Support” on page 26-2.

17 Confidence Test Failures

17-8

Test 5: Check Communication with Target Computer
This error occurs only when the target computer settings are out of date.

1 In the MATLAB Command Window, type slrtexplr.
2 In the Targets pane, expand the target computer node.
3 On the toolbar, click the Target Properties button .
4 Select Host-to-Target communication and make the required changes to the

communication properties.
5 Select Boot configuration.
6 Set the required Boot mode.

For information on boot options, see “Target Computer Boot Methods”.
7 Click Create boot disk
8 Restart the target computer.
9 Rerun slrttest.
10 If these steps do not resolve the issue, recreate the target boot kernel using

SimulinkRealTime.createBootImage, restart the target computer, and rerun
slrttest.

If this procedure does not solve your issue, continue with the tests in “Troubleshoot with
Confidence Test” on page 16-2. If you still cannot solve the issue, see “Find Simulink Real-
Time Support” on page 26-2.

 Test 5: Check Communication with Target Computer

17-9

Test 6: Download Prebuilt Real-Time Application
This test runs the basic target object constructor, slrt. This error rarely occurs unless an
earlier test has failed.

1 Check that tests 1–5 completed without producing an error message.
2 Configure, build, and download the tutorial model and record whatever error

messages appear (see “Build and Download Real-Time Application by Using Run on
Target”).

If this procedure does not solve your issue, continue with the tests in “Troubleshoot with
Confidence Test” on page 16-2. If you still cannot solve your issue, see “Find Simulink
Real-Time Support” on page 26-2.

17 Confidence Test Failures

17-10

Test 7: Execute Real-Time Application
This test executes a real-time application (slrttestmdl) on the target computer. If you
change the slrttestmdl model start time to something other than 0, such as 0.001,
this test fails. This change causes the test, and the MATLAB interface, to halt. To address
this failure:

1 Set the slrttestmdl model start time back to 0.
2 Rerun the test.

If this procedure does not solve your issue, continue with the tests in “Troubleshoot with
Confidence Test” on page 16-2. If you still cannot solve your issue, see “Find Simulink
Real-Time Support” on page 26-2.

 Test 7: Execute Real-Time Application

17-11

Test 8: Upload Logged Data and Compare Results
This test executes a real-time application (slrttestmdl) on the target computer. If you
change the slrttestmdl model (for example, if you remove the Outport block), this test
can fail.

Note Do not modify the files installed with the Simulink Real-Time software. If you want
to modify one of these files for your own purposes, copy the file and modify the copy.

1 Restore the slrttestmdl example model to its original state by one of the following
methods:

• Recreate the original model by editing it in the following location:

matlabroot\toolbox\rtw\targets\xpc\xpcdemos
• Reinstall the software.

2 If you are running a new Simulink Real-Time release, check that you have updated
the target boot kernel for this release. See “Install Simulink Real-Time Software
Updates” on page 26-3.

If this procedure does not solve your issue, continue with the tests in “Troubleshoot with
Confidence Test” on page 16-2. If all tests are successful but these do not solve your
issue, try the solutions available in “Troubleshooting in Simulink Real-Time”. If you still
cannot solve your issue, see “Find Simulink Real-Time Support” on page 26-2.

17 Confidence Test Failures

17-12

Development Computer
Configuration

18

Troubleshoot Halted Boot Drive Creation
The MATLAB interface on my development computer stops while creating a Simulink
Real-Time boot disk or network boot image.

What This Issue Means
This issue occurs when the location for writing the boot disk or image is not accessible or
you do not have write access to the location.

Try This Workaround
To identify the issue that has stopped boot drive creation, try these workarounds.

Use Another Development Computer Drive

Use another development computer drive to recreate the Simulink Real-Time boot drive
or network boot image.

Login as Administrator

On the development computer, login as administrator to recreate the Simulink Real-Time
boot drive or network boot image.

Check the Target Computer Drive

Check that the development computer drive is accessible. If it is not accessible, contact
Speedgoat support about replacing the development computer drive.

See Also

More About
• “Command-Line Network Boot Method” on page 5-16
• “Command-Line Standalone Boot Method” on page 5-18

18 Development Computer Configuration

18-2

External Websites
• https://www.speedgoat.com/support

 See Also

18-3

https://www.speedgoat.com/support

Target Computer Configuration

• “Troubleshoot Target Computer Stack Size” on page 19-2
• “Troubleshoot Target Computer Ethernet and MAC Address Information”

on page 19-4

19

Troubleshoot Target Computer Stack Size
I want to find the optimum amount of target computer memory to use for the stack.

What This Issue Means
The stack size on the target computer affects real-time application performance. For some
applications, it is important to analyze the current available stack size and minimum
available stack size, so that you can adjust the stack size for the application.

Try This Workaround
To discover and adjust the stack size used by the real-time threads on the target
computer:

1 Add these blocks to your model:

• Current Available Stack Size — Outputs the number of bytes of stack memory
currently available to the real-time application thread.

• Minimum Available Stack Size — Outputs the number of bytes that have not been
used in the stack since the thread was created.

The block traverses the entire stack at every time step to find and report unused
bytes. Use Minimum Available Stack Size only for diagnostic purposes.

2 Execute the real-time application, monitoring the stack size and minimal stack size.
3 Calculate a stack size that allows execution to proceed.

Target computer memory for the real-time application executable, the kernel, and
other uses is limited to a maximum of 4 GB.

4 Adjust the stack size of the real-time threads by using a TLCOptions setting.

For example, to set the stack size for real-time application xpcosc to 4096 kBytes, in
the MATLAB Command Window, type:

set_param('xpcosc','TLCOptions','-axPCModelStackSizeKB=4096')

19 Target Computer Configuration

19-2

See Also
“TLC Command-Line Options” | Current Available Stack Size | Minimum Available Stack
Size

 See Also

19-3

Troubleshoot Target Computer Ethernet and MAC
Address Information

I want to find Ethernet address information and MAC address information from the target
computer for configuring blocks in models.

What This Issue Means
To use Ethernet blocks in Simulink Real-Time models, you configure the blocks with
Ethernet address information and MAC address information. Typically, you set block
parameters to configure this information.

Try This Workaround
To configure a two-target-computer Ethernet network, collect the Ethernet address
information that is listed in this table. This information applies to Ethernet, EtherCAT®,
PTP, TCP, and UDP.

EtherCAT and PTP have protocol-specific requirements. For information about the
protocols that the card supports, see the network card documentation.

Connector Card
Name

Boot Com
m

Bus Slot Function PTP EtherCAT MAC
Addres
s

TargetPC1 A
TargetPC1 B
TargetPC2 A
TargetPC2 B

Set Up Hardware and Software for Information Gathering

Assemble these components:

• One Windows development computer with an Ethernet card.
• Two Speedgoat target machines, each with two Ethernet cards installed that support

network booting.

19 Target Computer Configuration

19-4

• One Ethernet switch.
• Three crossover Ethernet cables.

Starting with target computer TargetPC1, perform these steps:

1 On the development computer, run MATLAB, and then run Simulink Real-Time
Explorer.

2 Connect the development computer to the Ethernet switch.
3 Connect the target computer to the Ethernet switch by using a randomly chosen

Ethernet connector on the target computer.
4 In the Explorer Targets pane, create a SimulinkRealTime.target object for the

target computer.
5 In the Properties pane for the target computer, assign an IP address value.
6 Set Target driver to auto.
7 Set Boot mode to Network.

Repeat steps 3–7 for the other target computer,TargetPC2.

Collect PCI Address and MAC Address Information

Before collecting PCI address and MAC address information, perform the steps in “Set Up
Hardware and Software for Information Gathering” on page 19-4.

To perform these steps, MATLAB and Simulink Real-Time Explorer must be running.

Starting with target computer TargetPC1, fill in the table.

1 Click the Properties node representing the target computer.
2 Click the Reset button next to the MAC address field, and then click Create boot

disk.
3 Start the target computer and select the target computer name in the Simulink Real-

Time Network Boot dialog box.

If the target computer fails to start, replace the target computer Ethernet card with
an Ethernet card that supports network booting.

4 In Simulink Real-Time Explorer, from the Properties pane for the target computer,
copy the MAC address that is displayed in the MAC address field.

 Troubleshoot Target Computer Ethernet and MAC Address Information

19-5

This MAC address is the address of the card that caused the target computer to start.
For this MAC address, in the Boot column, enter Y.

5 To verify that the development computer can communicate with the target computer
by using this Ethernet card, type:

tg = slrt('TargetPC1')

If slrt returns something like:

Target: TargetPC1
 Connected = No

Enter N in the Comm column for this MAC address.

Stop the target computer, switch the Ethernet switch cable to another Ethernet
connector on the target computer, and start again from step 2.

6 If slrt returns something like:

Target: TargetPC1
 Connected = Yes
 Application = loader

Enter Y in the Comm column next to the MAC address. Enter the PCI bus, slot, and
function numbers displayed in the output log area in the Bus, Slot, and Function
columns for this MAC address.

This Ethernet connector is the connector that you use to start the target computer
and to communicate with it from the development computer.

7 In the Command Window, type:

getPCIInfo(tg, 'ethernet')

List of installed PCI devices:

Intel 82579LM
 Bus 0, Slot 25, Function 0, IRQ 3
 Ethernet controller
 VendorID 0x8086, DeviceID 0x1502, SubVendorID 0x15bd,
 SubDeviceID 0x100a
 Released in: R2012b
 Notes: Intel 8254x Gigabit Ethernet series

Intel 82574L

19 Target Computer Configuration

19-6

 Bus 5, Slot 0, Function 0, IRQ 10
 Ethernet controller
 VendorID 0x8086, DeviceID 0x10d3, SubVendorID 0x15bd,
 SubDeviceID 0x100a
 Released in: R2010a
 Notes: Intel 8254x Gigabit Ethernet series

Record the device name (for example, Intel 82574L) for each PCI bus, slot, and
function triplet.

If the device supports the PTP protocol, enter Y in the PTP column. Otherwise, enter
N. For more information, see “Prerequisites, Limitations, and Unsupported Features”.

If the device supports the EtherCAT protocol, enter Y in the EtherCAT column.
Otherwise, enter N.

Repeat steps 1–7 for the other target computer, TargetPC2. At the end of the process,
the table looks something like this table.

Connector Device
Name

Boot Com
m

Bus Slot Function PTP EtherCAT MAC
Addres
s

TargetPC1 A Intel
82579L
M

Y Y 0 25 0 N N 00:01:2
9:55:3C:
BB

TargetPC1 B Intel
82574L

Y N 5 0 0 Y N 00:01:2
9:55:3C:
BA

TargetPC2 A Intel
82574L

Y N 52 0 0 Y N 68:05:C
A:31:B9:
EF

TargetPC2 B Intel
82541GI
_LF

Y Y 16 4 0 N N 90:E2:B
A:17:5D:
15

See Also
Simulink Real-Time Explorer | getPCIInfo | slrt

 See Also

19-7

More About
• “Ethernet”
• “EtherCAT”
• “IEEE 1588 Precision Time Protocol”
• “TCP”
• “Real-Time UDP”

19 Target Computer Configuration

19-8

Link Between Development and
Target Computers

• “Troubleshoot Communication Failure with Target Computers” on page 20-2
• “Troubleshoot Communication Timeout with Target Computers” on page 20-4
• “Troubleshoot Communication Timeout with Target Computers and Multiple Ethernet

Cards” on page 20-6
• “Troubleshoot Communication Failure Through Firewall” on page 20-8
• “Troubleshoot Network Boot Failure Through Firewall” on page 20-10

20

Troubleshoot Communication Failure with Target
Computers

Some issue is causing the communications link to fail between the development computer
and the target computer.

What This Issue Means
The development computer communicates with the target computer by using an Ethernet
communications link. Various software and hardware configuration issues can interfere
with this link.

Try This Workaround
To test the communication link between the development and target computers, use these
MATLAB commands from the development computer:

• slrtpingtarget — The slrtpingtarget command performs a basic
communication check between the development and target computers. This command
returns success only if the Simulink Real-Time kernel is loaded and running and the
development and target computers are linked. Use this command for a quick check of
the communication between the development and target computers.

• slrttest — The slrttest command performs a series of tests on your Simulink
Real-Time system. These tests range from performing a basic link check to building
and running real-time applications. At the end of each test, the command returns an
OK or failure message. If the test is inappropriate for your setup, the command returns
a SKIPPED message. Use this command for a thorough check of your Simulink Real-
Time installation.

Boot Kernel Mismatch

Link errors can occur if the target computer is running an old Simulink Real-Time boot
kernel that is not synchronized with the Simulink Real-Time release installed on the
development computer. Recreate the target boot kernel for each new release.

Firewall Interference

Link errors can occur if you have an active firewall in your system. To work around this
issue, add the MATLAB interface to the firewall exception list.

20 Link Between Development and Target Computers

20-2

Multiple Ethernet Card Configurations

Link errors can occur if multiple Ethernet cards or chips are installed in the target
computer. See “Troubleshoot Communication Timeout with Target Computers and
Multiple Ethernet Cards” on page 20-6.

See Also

More About
• “Troubleshoot with Confidence Test” on page 16-2

External Websites
• https://www.speedgoat.com/support

 See Also

20-3

https://www.speedgoat.com/support

Troubleshoot Communication Timeout with Target
Computers

Some issue is causing communications between the development computer and target
computer to time out.

What This Issue Means
If the communication link between the development and target computers is broken or
misconfigured, the link times out after about 5 seconds. Before you continue
troubleshooting, check that you have followed the instructions in “System Configuration”.

Try This Workaround
To identify timeout issues, use these steps:

1 In the MATLAB Command Window, type slrtexplr.
2 In the Targets pane, expand the target computer node.
3 On the toolbar, click the Target Properties button .
4 Select Host-to-Target communication and make the required changes to the

communication properties.
5 Select Boot configuration, and then click Create boot disk.
6 Restart the target computer and try downloading the real-time application again.
7 Sometimes, the download is complete even though you get a timeout error. To detect

this condition, wait until the target display shows:

System:initializing application finished.
8 In the MATLAB Command Window, type slrtpingtarget.

If slrtpingtarget finds a working connection between the development and target
computers, the response is something like:

ans =

success
9 To set the connection between host and target, in the Command Window, type:

20 Link Between Development and Target Computers

20-4

tg=slrt;
ping(tg,'reset')

10 Right-click the target computer, and then select Connect.

If the connection resumes, the connection is working. If the connection times out
consistently for a particular model, increase the amount of time allowed before a timeout.

By default, the development computer times out after about 5 seconds if the target
computer does not respond after you establish a connection. You can increase the timeout
value in one of these ways:

• At the model level, open the Simulink > Model Configuration Parameters dialog
box and navigate to the Simulink Real-Time Options node. Clear the Use default
communication timeout parameter and enter a new timeout value in the Specify
the communication timeout in seconds parameter. For example, to increase the
value to 20 s, enter 20, and then build and download the model.

• At the real-time application level, set the CommunicationTimeOut property to the
timeout value that you want. For example, to increase the value to 20 seconds:

tg = slrt;
tg.CommunicationTimeOut = 20

For both methods, the development computer polls the target computer about once every
second, and if a response is returned, returns the success value. The development
computer waits the full 20 seconds only if a download actually fails.

See Also

More About
• “System Configuration”

External Websites
• https://www.speedgoat.com/support

 See Also

20-5

https://www.speedgoat.com/support

Troubleshoot Communication Timeout with Target
Computers and Multiple Ethernet Cards

Some issue related to multiple Ethernet cards in the target computer is causing
communications between the development computer and target computer to time out.

What This Issue Means
The Simulink Real-Time product supports multiple Ethernet cards and chips. If your
target computer has more than one of these cards or chips installed, it is possible to
experience timeout problems. For example, suppose that you are using the network boot
option to start target computer A. When the development computer starts the target
computer, it associates the target computer IP address with the Media Access Control
(MAC) address of Ethernet adapter A. Then, suppose that the target computer BIOS
connects the target computer to Ethernet adapter B. In this case, the Simulink Real-Time
software cannot connect the development and target computers because they are
connected to different Ethernet controllers.

Try This Workaround
If your Speedgoat target computer has multiple Ethernet adapters of the same type, use
one of the following procedures to determine which Ethernet adapter the software found.
For support with resolving this possible issue with your Speedgoat target machine,
contact Speedgoat support:

www.speedgoat.com/support.

Check Communications for Network Boot

If you are using the network boot option to start the target computer, follow the
procedure in “Ethernet Card Selection by Index” on page 5-9.

Check Communications for Non-Network Boot

If you are not using the network boot option to start the target computer, do the
following:

1 Switch the network cable to the other Ethernet port and restart the target computer.
Try to communicate with the target computer from the development computer.

20 Link Between Development and Target Computers

20-6

https://www.speedgoat.com/support

2 If you can communicate using this Ethernet port, use this port to connect the
development computer to the target computer.

See Also

More About
• “System Configuration”
• “Ethernet Card Selection by Index” on page 5-9

External Websites
• https://www.speedgoat.com/support

 See Also

20-7

https://www.speedgoat.com/support

Troubleshoot Communication Failure Through Firewall
Some issue with Windows Defender Firewall of the development computer causes a
communications failure with the target computer.

What This Issue Means
This failure occurs when the firewall settings in Windows Defender Security Center block
communications with the target computer. The firewall configuration must not block the
IP addresses that the development and target computers use to communicate.

Try This Workaround
Configure the firewall settings in Windows Defender Security Center to allow
communications between the development and target computers.

1 Confirm that the firewall on the development computer is Windows Defender. In the
Command Window type:

[~,antivirus]=system('WMIC /Node:localhost /Namespace:\\root\SecurityCenter2 Path AntiVirusProduct Get displayName /Format:List')

The antivirus software displays as Windows Defender.
2 Find Windows Defender Firewall with Advanced Security with Windows

search.
3 Select Inbound Rules and New Rule.
4 For the Rule Type, select Custom and Next.
5 For the Program, select All programs and Next.
6 For the Protocol and Ports, select Any and Next.
7 For the Scope, add the IP address of the development computer in Which local IP

addresses does this rule apply to? and add the target computer IP address in
Which remote IP addresses does this rule apply to?.

8 For the Action, select Allow the connection and Next.
9 For the Profile, select the Domain, Private, and Public check boxes and Next.
10 For Name, provide a Name for this inbound rule (for example, Simulink Real-

Time inbound) and Finish.
11 Select Outbound Rules and New Rule.

20 Link Between Development and Target Computers

20-8

12 Repeat steps 4 through 10 for the custom outbound rule.

See Also

More About
• “Troubleshoot Communication Failure with Target Computers” on page 20-2

 See Also

20-9

Troubleshoot Network Boot Failure Through Firewall
Some issue with Windows Defender Firewall of the development computer causes a
network boot failure with the target computer. The network boot fails with this error on
the target computer.

PXE-E51: No DHCP or proxyDHCP offers were received.
PXE-M0F: Exiting Intel Boot Agent.

What This Issue Means
This error message occurs when the firewall settings in Windows block communications
for the network boot server application. The firewall configuration must not block
operation of the boot server.

Try This Workaround
The net boot server uses the BOOTP and TFTP protocols. These protocols use UDP
communications on ports 67 through 70. Consult with your IT department to allow
communication across the Windows firewall.

Both TCP and UDP protocol use that port range. Typically, a firewall rule needs to be
created for the Ethernet card or IP range that you use to communicate between host and
target computer.

See Also

More About
• “Check Communications for Network Boot” on page 20-6

20 Link Between Development and Target Computers

20-10

Target Computer Boot Process

21

Model Compilation

• “Troubleshoot Model Links to DLLs” on page 22-2
• “Troubleshoot Build Error for Accelerator Mode” on page 22-3
• “Troubleshoot Referenced Model with Global Data Stores” on page 22-4

22

Troubleshoot Model Links to DLLs
Some model build issues are caused by linking to dynamic link libraries (.dll).

What This Issue Means
When building real-time applications, the Simulink Real-Time software supports links to
static link libraries (.lib) only, not links to dynamic link libraries (.dll), such as Windows
libraries. Building a real-time application from a model with links to one or more DLLs
produces a build error.

Try This Workaround
When you build your models, check that you link to only static link libraries. When you
compile with Simulink Real-Time S-functions, linking to static libraries avoids the
dependency issues that occur in dynamic libraries. Each static library must be self
contained. The static library must not be dependent on another external library.

See Also

More About
• “Build Support for S-Functions” (Simulink Coder)

22 Model Compilation

22-2

Troubleshoot Build Error for Accelerator Mode
I get a build error when building a model in accelerator mode or rapid accelerator mode
when the model contains Simulink Real-Time blocks (for example, model blocks that
represent hardware).

What This Issue Means
Simulink Real-Time does not support accelerator mode or rapid accelerator mode
simulation of models with blocks that represent hardware. For example, if you open the
xpcEnetDemo1Rx model, change the Simulink mode to rapid accelerator, and run the
model, Simulink displays this error:

Build procedure for model: 'xpcEnetDemo1Rx' aborted due to an error.
Unable to build a standalone executable to simulate the model
'xpcEnetDemo1Rx' in rapid accelerator mode.

This error occurs because accelerator mode and rapid accelerator mode produce
compiled code that runs on the development computer, not on the Simulink Real-Time
target computer. Any blocks that access hardware report a build error if you compile
them by using accelerator mode or rapid accelerator mode.

Try This Workaround
Change the simulation mode to normal mode or external mode.

See Also

More About
• “How Acceleration Modes Work” (Simulink)
• “Simulink Real-Time Options Pane”

 Troubleshoot Build Error for Accelerator Mode

22-3

Troubleshoot Referenced Model with Global Data Stores
Some Simulink Real-Time model build issues are caused by using global data stores in
referenced models. The diagnostic viewer displays an error:

Error: Simulink Real-time does not support global data stores across
model reference blocks.

What This Issue Means
Simulink Real-Time model builds do not support global data stores for referenced models.

Try This Workaround
Restructure the model to eliminate global data stores.

See Also
Data Store Memory

More About
• “Local and Global Data Stores” (Simulink)

22 Model Compilation

22-4

Real-Time Application Execution

• “Troubleshoot Missing or Unreadable Crash Information” on page 23-2
• “Troubleshoot Unexpected Measured Sample Time Value” on page 23-4
• “Troubleshoot Changed Sample Time at Run Time That Affects Results”

on page 23-6
• “Troubleshoot Unexpected Measured Stop Time Value” on page 23-7

23

Troubleshoot Missing or Unreadable Crash Information
I get missing or unreadable development computer crash information and errors for the
SimulinkRealTime.crashInfo function.

What This Issue Means
Target computers save crash data to their hard disk after a fatal error. Use the
SimulinkRealTime.crashInfo function to view this information.

Caution After a fatal error, do not restart the computer manually by using the boot or
power switch. A manual restart prevents the computer from saving the crash data.

Twenty seconds after a fatal error, the target computer restarts itself and saves the crash
data on the target computer hard drive. When the computer is running again, you can call
the SimulinkRealTime.crashInfo function from the development computer to
retrieve the crash data.

If an error occurs when you call the SimulinkRealTime.crashInfo function, the
target computer can display error:

Error: -9:file not found

And, the development computer can display the error:

Could not open target file c:\SLRTCRB.bin

Try This Workaround
If you see one of the messages in the examples, look for one of these causes and try the
related workaround.

Wait for the Target Computer Restart

If you restarted the target computer manually by using the boot or power switch, the
manual restart prevented the target computer from generating crash information. Try
waiting for the target computer to restart itself instead if another crash occurs.

23 Real-Time Application Execution

23-2

Check the Boot Kernel

If the target computer restarted with a different kernel from the one that it was running
when it experienced the fatal error, the different kernel can prevent the target computer
from generating crash information. For example, suppose that you install DOS Loader on
the target computer. If you start the computer with a USB drive that you remove
afterward, and the computer has a fatal error, the restart uses DOS Loader. Try to make
sure that the target computer can boot from the same kernel (not a different kernel) if
another crash occurs.

Check the Crash Message

If the target computer restarts itself after a fatal error but does not print a message
referring to SimulinkRealTime.crashInfo, the target computer does not retain
information in memory. The target computer does not retain information in memory from
before a software restart. Try to make sure that you see a message referring to
SimulinkRealTime.crashInfo after a crash occurs.

Check the Target Computer Drive

If the target computer does not have a functioning hard drive (for example, it uses a RAM
drive instead), the target computer does not retain crash information. Try checking
whether the target computer hard drive is functional.

Check the Crash Info File

If the target computer wrote data into a crash file, the SimulinkRealTime.crashInfo
function fails if the file is unreadable. Try checking whether the crash information file is
readable.

See Also
Crash Info | SimulinkRealTime.utils.getConsoleLog

 See Also

23-3

Troubleshoot Unexpected Measured Sample Time Value
Some issue is causing the measured sample time from the model to deviate from the
requested sample time in the model.

What This Issue Means
Sometimes the sample time that you measure from your model is not equal to the sample
time that you requested. This difference depends on your target computer. Your model
sample time is as close to your requested time as the target computer CPU allows.

Some amount of error is common for most computers. The margin of error varies from
machine to machine.

Most high-level operating systems, like Microsoft Windows or Linux®, occasionally insert
extra long intervals to compensate for errors in the timer. The Simulink Real-Time
software does not attempt to compensate for timer errors. For this product, close
repeatability is more important for most models than exact timing. However, sometimes
chips have inherent designs that produce residual jitters that can potentially change your
system behavior. For example, some Intel® Pentium chips produce residual jitters on the
order of 0.5 microseconds from interrupt to interrupt.

Digital processing does not allow infinite precision in setting the spacing between the
timer interrupts. This limitation can cause the divergent sample times.

For the supported target computers, the only timer that can generate interrupts is based
on a 1.193-MHz clock. For the Simulink Real-Time system, the timer is set to a fixed
number of ticks of this frequency between interrupts. If you request a sample time of
1/10000 seconds, or 100 microseconds, you do not get exactly 100 ticks. Instead, the
Simulink Real-Time software calculates that number as:

100 x 10-6 s X 1.193 x 106 ticks/s = 119.3 ticks

The Simulink Real-Time software rounds this number to the nearest whole number, 119
ticks. The actual sample time is then:

119 ticks/(1.193 X 106 ticks/s) = 99.75 X 10-6 s
(99.75 microseconds)

Compared to the requested original sample time of 100 microseconds, this value is 0.25%
faster.

23 Real-Time Application Execution

23-4

Try This Workaround
You can use the calculated value for the number of ticks in the requested sample time to
derive the expected measured sample time for your target computer. Assume the
following:

• Output board that generates a 50 Hz sine wave (expected signal)
• Sample time of 1/10000
• Measured signal of 50.145 Hz

The difference between the expected and measured signals is 0.145 Hz, which deviates
from the expected signal value by 0.29% (0.145 / 50). Compared to the previously
calculated value of 0.25%, there is a difference of 0.04% from the expected value.

If you want to refine the measured deviation for your target computer, assume the
following:

• Output board that generates a 50 Hz sine wave (expected signal)
• Sample time of 1/10200
• Measured signal of 50.002 Hz:

1/10200 s X 1.193 x 106 ticks/s = 116.96 ticks

Round this number to the nearest whole number of 117 ticks. The resulting frequency is
then:

(116.96 ticks/117)(50) = 49.983 Hz

The difference between the expected and measured signal is 0.019, which deviates from
the expected signal value by 0.038% (0.019 / 50.002). When the sample time is
1/10000, the deviation is 0.04%.

See Also

More About
• “Limits on Sample Time” on page 10-12

 See Also

23-5

Troubleshoot Changed Sample Time at Run Time That
Affects Results

Some blocks produce incorrect results when their sample time is changed at run time.

What This Issue Means
Some blocks produce incorrect results when you change their sample time at run time. If
you include such blocks in your model, the software displays a warning message during
the model build.

Try This Workaround
To avoid incorrect results, change the sample time in the original model. Then, rebuild
and download the model.

See Also

More About
• “Limits on Sample Time” on page 10-12

23 Real-Time Application Execution

23-6

Troubleshoot Unexpected Measured Stop Time Value
Some issue is causing the measured stop time from the model to deviate from the
requested stop time in the model.

What This Issue Means
If you change the step size of a real-time application at run time, the real-time application
sometimes executes for fewer steps than you expect. The number of execution steps is:

floor(stop time/step size)

When you compile code for a model, Simulink Coder calculates the number of steps based
on the current step size and stop time. If the stop time is not an integral multiple of the
step size, Simulink Coder adjusts the stop time to an integral multiple. If you change the
step size without rebuilding the model, Simulink Real-Time uses the new step size and the
previously adjusted stop time. The resulting model sometimes executes for fewer steps
than you expect.

Example

Suppose that a model has a stop time of 2.4 and a step size of 1. At compilation time,
Simulink Coder adjusts the stop time of the model to 2. If you change the step size to 0.6
at run time but do not recompile the application, the expected number of steps is 4. The
actual number of steps is 3 because Simulink Real-Time uses the previously adjusted stop
time of 2.

Try This Workaround
Check that the original stop time (as specified in the model) is an integral multiple of the
original step size.

See Also

More About
• “Control Real-Time Application at Target Computer Command Line” on page 9-2

 Troubleshoot Unexpected Measured Stop Time Value

23-7

Real-Time Application Signals

• “Troubleshoot Invalid File IDs on Target Computer” on page 24-2
• “Troubleshoot Missing Mux Block Output on Scope” on page 24-3

24

Troubleshoot Invalid File IDs on Target Computer
I get invalid file ID errors on the target computer.

What This Issue Means
If you acquire signal data with a file scope, you can get Error -10: Invalid File ID
on the target computer. This error occurs when the size of the signal data file exceeds the
available space on the disk. The signal data is most likely corrupt and irretrievable.
Delete the signal data file and restart the Simulink Real-Time system.

Try This Workaround
Monitor the size of the signal data file as the scope acquires data. Stop data acquisition
before the file size exceeds the available disk space.

For additional information, refer to the MathWorks Support website:

www.mathworks.com/support/search_results.html?q=product:"Simulink
+Real-Time".

See Also
Gain

External Websites
• www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"

24 Real-Time Application Signals

24-2

https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"

Troubleshoot Missing Mux Block Output on Scope
Some issue is causing the Mux block output not to display on a real-time scope.

What This Issue Means
When you connect Mux block output to a real-time Scope block, sometimes you cannot
view the output from the Mux block. This issue occurs because the Mux block produces a
virtual signal. The code optimizer removes the virtual signal during the build process for
the real-time executable.

Try This Workaround
Insert a Gain block with the Gain parameter set to 1.0 at the input to the real-time Scope
block.

See Also
Gain

More About
• “Virtual Signals” (Simulink)

 Troubleshoot Missing Mux Block Output on Scope

24-3

Real-Time Application Performance

• “Troubleshoot Unsatisfactory Real-Time Performance” on page 25-2
• “Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 25-5
• “Troubleshoot Task Execution Time” on page 25-7
• “Troubleshoot Failed Read of Profiling Data” on page 25-8
• “Troubleshoot Timeout During File System Access” on page 25-9

25

Troubleshoot Unsatisfactory Real-Time Performance
I want some recommended methods to improve unsatisfactory real-time application
performance.

What This Issue Means
Run-time performance and reduce the task execution time (TET) of a model depend on
model design, target computer capacity, and target computer utilization.

Try This Workaround
You can improve run-time performance and reduce the task execution time (TET) of a
model with these methods.

Run Performance Tools

Use these performance tools:

• Run Performance Advisor. On the Debug tab, click Performance Advisor and apply
the advice that it provides. See “Improve Performance of Multirate Model” on page 10-
2 and “Sample Time and Throughput in Real-Time Applications” on page 10-29.

• Configure a real-time application for profiling, run it, and call profile_slrt to
retrieve the results. Evaluate the results for potential improvements in the task and
core distribution of the model. See “Execution Profiling for Real-Time Applications” on
page 10-19.

Use a Multicore Target Computer

You can improve run-time performance by configuring your model to take advantage of
your multicore target computer:

1 Partition the model into subsystems according to the physical requirements of the
system that you are modeling. Set the block sample rates within each subsystem to
the slowest rate that meets the physical requirements of the system.

2 In the Configuration Parameters dialog box, on the Solver pane, select the check box
for Treat each discrete rate as a separate task.

3 Select the Allow tasks to execute concurrently on target check box.

25 Real-Time Application Performance

25-2

4 Click Configure Tasks, and then select the Enable explicit model partitioning for
concurrent behavior check box.

5 Create tasks and triggers, and then explicitly assign subsystem partitions to the
tasks. See “Partition Your Model Using Explicit Partitioning” (Simulink) and
“Multicore Programming with Simulink” (Simulink).

6 In Simulink Real-Time Explorer, on the Target settings pane, check that you
selected the Multicore CPU check box.

7 Run the real-time application.

Minimize the Model

You can improve run-time performance by minimizing your model to make more memory
and CPU cycles available for the real-time application:

1 If the model contains many states (for example, more than 20 states), clear the
States check box in the Configuration Parameters dialog box, on the Data Import/
Export pane. You have now disabled state logging, making more memory available
for the real-time application.

2 On the Data Import/Export pane, clear the Time, States, Output, Final states,
and Signal logging parameters. You have now turned off data logging, making more
CPU cycles available for calculating the model.

3 On the Simulink Real-Time Options pane, clear the Monitor Task Execution
Time check box. You have now disabled TET logging for the real-time application.

4 On the Solver pane, increase Fixed-step size (fundamental sample time).
Executing with a short sample time can overload the CPU.

5 Use polling mode. See “Polling Mode” on page 7-3.
6 In Simulink Real-Time Explorer, on the Target settings pane, clear the Graphics

mode check box to disable the target scope display.
7 Remove scopes from the model.
8 Eliminate or minimize target computer disk I/O in your model.
9 Reduce the number of I/O channels in the model.

Contact Technical Support

For additional guidance, refer to these sources:

• MathWorks Tech Support: www.mathworks.com/support/
search_results.html?q=product:"Simulink+Real-Time"

 Troubleshoot Unsatisfactory Real-Time Performance

25-3

https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"

• MATLAB Answers: www.mathworks.com/matlabcentral/answers/?
term=Simulink+Real-Time

• MATLAB Central: www.mathworks.com/matlabcentral

For Speedgoat hardware issues, contact Speedgoat Tech Support: www.speedgoat.com/
support.

Read More

“Find Simulink Real-Time Support” on page 26-2

See Also

More About
• “Sample Time and Throughput in Real-Time Applications” on page 10-29
• “Improve Performance of Multirate Model” on page 10-2
• “Sample Time and Throughput in Real-Time Applications” on page 10-29
• “Execution Profiling for Real-Time Applications” on page 10-19
• “Partition Your Model Using Explicit Partitioning” (Simulink)
• “Polling Mode” on page 7-3
• “Find Simulink Real-Time Support” on page 26-2
• “Multicore Programming with Simulink” (Simulink)

External Websites
• www.speedgoat.com/products
• https://www.speedgoat.com/support

25 Real-Time Application Performance

25-4

https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/
https://www.speedgoat.com/support
https://www.speedgoat.com/support
https://www.speedgoat.com/products
https://www.speedgoat.com/support

Troubleshoot Overloaded CPU from Executing Real-Time
Application

Some issue is producing a CPU overload when executing a real-time application.

What This Issue Means
A CPU overload indicates that the CPU is unable to complete processing a model time
step before restarting for the next time step. When this error occurs, the target object
property CPUoverload changes from none to detected. One of the following can occur:

• The Simulink Real-Time kernel halts model execution.
• If you allow the overload, model execution continues until a predefined event occurs

(see “Permit CPU Overloads for Diagnosis” on page 25-6). If the model continues to
run after a CPU overload, the time step lasts as long as the time required to finish the
execution. This behavior delays the next time step.

For more information and test models, see www.mathworks.com/matlabcentral/
fileexchange/23507.

Model design or target computer resources cause CPU overloads. Possible reasons are:

• The target computer is too slow or the model sample time is too small (see “Limits on
Sample Time” on page 10-12).

• The model is too complex (algorithmic complexity).
• The model does disk I/O on the target computer hard drive.
• I/O latency, where each I/O channel used introduces latency into the system. I/O

latency can cause the execution time to exceed the model time step.

To find latency values for Speedgoat boards, contact Speedgoat technical support.

Try This Workaround
The Simulink Real-Time kernel usually halts model execution when it encounters a CPU
overload. You can configure the Simulink Real-Time model to allow CPU overloads. Use
this capability to support long initializations and for overload diagnosis.

 Troubleshoot Overloaded CPU from Executing Real-Time Application

25-5

https://www.mathworks.com/matlabcentral/fileexchange/23507-xpc-target-cpu-overloads
https://www.mathworks.com/matlabcentral/fileexchange/23507-xpc-target-cpu-overloads
https://www.speedgoat.com/help

Permit Long Initialization Time

For some real-time applications, normal initialization can extend beyond the first sample
time. Use the TLCOptions property xPCStartupFlag with the smallest effective value,
up to approximately 5.

Permit CPU Overloads for Diagnosis

During execution, hardware-specific factors can cause the real-time application to process
data beyond the sample time. Use the TLCOptions properties xPCMaxOverloads and
xPCMaxOverloadLen to diagnose and address this issue.

Note Allowing the target computer CPU to overload can cause incorrect results,
especially for multirate models. Use these TLC command-line options only for diagnosis.
When your diagnosis is complete, turn off these options.

See Also
SimulinkRealTime.utils.getConsoleLog

More About
• “CPU Overload Options” on page 10-14
• “TLC Command-Line Options”

25 Real-Time Application Performance

25-6

Troubleshoot Task Execution Time
I want to find the task execution time (TET) for one sample step.

What This Issue Means
Task execution time (TET) measures how long it takes the kernel to run for one base-rate
time step.

Try This Workaround
For a multirate model, use the profiler to find out what the execution time is for each rate.

See Also

Related Examples
• “Open TET Monitor and View Status”

 Troubleshoot Task Execution Time

25-7

Troubleshoot Failed Read of Profiling Data
I get an error from the getProfilerData function.

What This Issue Means
A call of the getProfilerData function produces an error because:

• The file does not exist in the expected location.
• The attempt to read the file causes an error.

Try This Workaround
To address this issue, try this procedure:

1 Check that you have set the profiling options in Code Generation > Verification.
2 Build and download the real-time application.
3 In the Command Window, enter:

tg = slrt;
startProfiler(tg);
start(tg);
pause(1);
stop(tg);
profiler_data = getProfilerData(tg)

See Also

Related Examples
• “Execution Profiling for Real-Time Applications” on page 10-19
• “Troubleshoot Timeout During File System Access” on page 25-9

25 Real-Time Application Performance

25-8

Troubleshoot Timeout During File System Access
Some issue is causing a timeout during access to the target computer file system.

What This Issue Means
While you are accessing the target computer file system to read or write a large data or
log file, the connection between the development and target computer systems times out.

Try This Workaround
Increase the communication timeout value. If using file scopes, try using the Simulation
Data Inspector instead to reduce file system I/O. If the file system access is failing during
large file transfers, try using an FTP client for the transfer.

See Also

Related Examples
• “Troubleshoot Communication Timeout with Target Computers” on page 20-4
• “Troubleshoot Failed Read of Profiling Data” on page 25-8

 Troubleshoot Timeout During File System Access

25-9

Simulink Real-Time Support

• “Find Simulink Real-Time Support” on page 26-2
• “Install Simulink Real-Time Software Updates” on page 26-3

26

Find Simulink Real-Time Support
For support with Speedgoat target machines or I/O modules, contact Speedgoat support:

www.speedgoat.com/support.

For support on general MATLAB or Simulink issues, see MathWorks Support:

www.mathworks.com/support.

For support on Simulink Real-Time issues, see:

• Simulink Real-Time Support:

www.mathworks.com/support/search_results.html?q=product:"Simulink
+Real-Time"

• Simulink Real-Time Answers:

www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time

www.mathworks.com/matlabcentral/answers/?term=xPC+Target
• Simulink Real-Time Central File Exchange:

www.mathworks.com/matlabcentral/fileexchange/?term=Simulink+Real-
Time

www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target

After searching these resources, if you still cannot solve your issue:

1 Call function SimulinkRealTime.getSupportInfo to retrieve diagnostic
information for your Simulink Real-Time configuration.

SimulinkRealTime.getSupportInfo can record information that is sensitive to
your organization. Review this information before disclosing it to MathWorks.

2 For online or phone support, contact the Simulink Real-Time Technical Team directly:

www.mathworks.com/products/simulink-real-time/expert-
contact.html.

26 Simulink Real-Time Support

26-2

https://www.speedgoat.com/support
https://www.mathworks.com/support.html
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/answers/?term=xPC+Target
https://www.mathworks.com/matlabcentral/fileexchange/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/fileexchange/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target
https://www.mathworks.com/products/simulink-real-time/expert-contact.html
https://www.mathworks.com/products/simulink-real-time/expert-contact.html

Install Simulink Real-Time Software Updates
The general procedure for updating Simulink Real-Time is:

1 Navigate to the MathWorks download page:

www.mathworks.com/downloads.
2 Navigate to the page for the Simulink Real-Time software version that you want.

Download it to your development computer.
3 Install and integrate the new release software.

After updating Simulink Real-Time, to recreate your Simulink Real-Time target settings:

1 In the MATLAB Command Window, type slrtexplr.
2 On the Targets pane, expand the target computer node.
3 On the toolbar, click the Target Properties button .
4 Select Host-to-Target communication and select the required communication

method between your development and target computers (“PCI Bus Ethernet
Setup”).

5 Select Boot configuration and click Create boot disk.
6 Restart the target computer.
7 Build each model that you want to execute. In Simulink Editor, on the Real-Time tab,

click Run on Target.

See Also

More About
• “PCI Bus Ethernet Setup”

External Websites
• https://www.mathworks.com/downloads
• https://www.speedgoat.com/support

 Install Simulink Real-Time Software Updates

26-3

https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads
https://www.speedgoat.com/support

